Quadruple hydrogen bonded self-assemblies of 5,5'-bisdiazo-dipyrromethane

Zhenming Yin ${ }^{\text {a, },}$, Wuyan Wang ${ }^{\text {a }}$, jianhuan Guo ${ }^{\text {a }}$, Jiachun Wang ${ }^{\text {a }}$, Jiaqi He ${ }^{\text {b }}$, Jin-Pei Cheng ${ }^{\text {b* }}$

Abstract

a: College of Chemistry and Life Science, Tianjin Key Laborary of Cyto-Genetical and Molecular Regulation, Tianjin Normal Uinversity, Tianjin 300387, China; E-mail: tjyinzm@yahoo.com.cn b: Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China; E-mail: Chengip@nankai.edu.cn

S1. Synthesis of compounds 1 and 2.

(i) A 0 solution of the aromatic amine $(5 \mathrm{mmol})$ and aqueous $\mathrm{HCl}(4 \mathrm{~mL})$ in water 4 (mL) was treated with a 0 solution of $\mathrm{NaNO}_{2}(0.35 \mathrm{~g}, 5 \mathrm{mmol})$ in water $(10 \mathrm{~mL})$, and the mixture was stirred at 0 for 0.5 h .
(ii) The diazonium salt solution previously prepared (5.0 mmol) was added drop wise to the solution of dipyrromethane $(0.5 \mathrm{~g}, 2.5 \mathrm{mmol})$ in acetonitrile $(25 \mathrm{ml})$ and three drops of acetic acid. The combined solution was maintained at 0 for 2 h with stirring. After this time, EtOAc $(25 \mathrm{ml})$ and water $(25 \mathrm{ml})$ were added. The organic layer was separated and washed with water $(20 \mathrm{ml})$ and dried with anhydrous MgSO_{4}. The dried solution was evaporated and the residue was purified by column chromatography on silica.

Compound 1: orange powder, 0.58 g , yield 57%, m.p. $=177,{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) ; \delta 9.28(\mathrm{~s}, 2 \mathrm{H}$, pyrrole NH$), 7.69(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}), 7.39(\mathrm{t}, J=8 \mathrm{~Hz}, 4 \mathrm{H}$, $\mathrm{CH}), 7.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}), 6.92(\mathrm{~d}, J=4 \mathrm{~Hz}, 2 \mathrm{H}$, Py CH), $6.19(\mathrm{~d}, J=4 \mathrm{~Hz}, 2 \mathrm{H}$, Py CH), $1.79\left(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H},-\mathrm{CH}_{2}-\right), 0.59\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H},-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.5,27.2,44.0,111.3,117.4,122.0,122.2,129.3,141.9,146.0,152.7 ;$ FAB-MS: $411(\mathrm{M}+1)$; Elemental analysis: $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{6}$: Calcd: $\mathrm{C}, 73.14 ; \mathrm{H}, 6.38 ; \mathrm{N}$, 20.47. Found: C, 73.05; H, 6.40; N, 20.55.

Compound 2: orange powder, 0.59 g , yield 54%, m.p. $=235,{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) ; \delta 9.11(\mathrm{~s}, 2 \mathrm{H}$, pyrrole NH$), 7.61(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}), 7.15(\mathrm{t}, J=8 \mathrm{~Hz}, 4 \mathrm{H}$,

CH), 6.89 (d, $J=4 \mathrm{~Hz}, 2 \mathrm{H}$, Py CH), $6.22\left(\mathrm{~d}, J=4 \mathrm{~Hz}, 2 \mathrm{H}\right.$, Py CH), 2.37 (s, $6 \mathrm{H},-\mathrm{CH}_{3}$), $1.89\left(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H},-\mathrm{CH}_{2}\right.$) , $0.66\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H},-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.94,21.4,27.7,43.9,110.6,115.9,121.8,129.6,139.4,140.8,145.7$, 150.6; FAB-MS: $439(\mathrm{M}+1)$; Elemental analysis: $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{6}$: Calcd: C, 73.94; H, 6.89; N, 19.16. Found: C, 73.85; H, 6.62; N, 19.39.

S2. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2}$ in CDCl_{3} solution showing the dimerization induced shift changes (concentrations from bottom to top: 2, 5, 10, 15, 20, 25 mM).

