Electronic Supplementary Information for:

Polymorphism of lead (II) benzenethiolate: a noncentrosymmetric new allotropic form of Pb(SPh)₂.

Michel Giffard, Nicolas Mercier, Benoît Gravoueille, Emilie Ripaud, Jerôme Luc and Bouchta Sahraoui.

SYNTHETIC PROCEDURES

Synthesis of β -Pb(SPh)₂ powder through metathesis reaction⁵

A solution of benzenethiol (11.0 g, 0.1 mol) in ethanol (100 mL) was added dropwise, under stirring, to a hot (70°C) solution of hydrated lead (II) acetate Pb(CH₃CO₂)₂, 3 H₂O (19.0 g, 0.05 mol) in 30 mL of an 80/20 (v/v) ethanol/water mixture, leading to the precipitation of a yellow solid. The mixture was further heated under reflux for 1 hour, then the solid (21.0 g, yield 98%) was filtered, washed with aqueous ethanol (EtOH/H₂O: 80/20) and then with pure ethanol, and finally dried under vacuum. mp 201°C. The powder X-ray diagram of the material thus obtained could be indexed using the cell parameters characteristic of β -Pb(SPh)₂ (see below crystallographic data).

Recrystallization⁴ of β -Pb(SPh)₂: its conversion to α -Pb(SPh)₂

In a 250 mL Erlenmeyer flask were successively introduced 50 mL of methanol (degassed by nitrogen bubbling), 0.55 g (5 mmol) of benzenethiol, 1.25g (2.95 mmol) of β -Pb(SPh)₂ powder and 5 ml of a 0.5 mol.L⁻¹ methanolic solution of sodium methoxide (Aldrich). The mixture was briefly stirred by hand and then left without stirring, in the dark and under nitrogen atmosphere, for 3 days. Afterwards, the mixture was filtered and washed with methanol, affording 0.82 g (recrystallization yield: 66%) of crystals which were proved to be α -Pb(SPh)₂ by single crystal and powder X-ray analysis (see below crystallographic data).

Crystals of α -Pb(SPh)₂ are also obtained when applying the same procedure but replacing sodium methoxide by 2.5 mmol of benzylamine or (S)-1-phenyl ethylamine (recrystallization yields: 58% and 62% respectively). Additionally, in those cases, we were able to recover, for the most part, the fraction of lead (II) benzenethiolate remaining in solution, probably in the form of the complex [Pb(SPh)₃]⁻: after the filtration of the crystals of α -Pb(SPh)₂, the mother-liquor was evaporated, which led to decomposition of the complex; the resulting material was washed with diethyl ether, in which benzenethiol and benzylammonium or (S)-1-phenyl ethylammonium benzenethiolate are soluble, affording a further crop of lead (II) benzenethiolate collected by filtration; however, this second fraction was shown, by powder X-ray diffraction, to be β -Pb(SPh)₂, thus, in the end, unchanged with regard to the starting material. (The formation of the β -phase in these latter conditions can be related to the fact that its precipitation is fast).

Thermal conversion of crystals of α-Pb(SPh)₂ into β-Pb(SPh)₂

A sealed tube containing, under a nitrogen atmosphere, crystals (200 mg) of α -Pb(SPh)₂, obtained as described above, was placed for one night in an oven heated at 175°C and then taken out of the oven and allowed to cool down to room temperature. The material contained in the tube was then shown, by single crystal and powder X-ray analysis, to be β -Pb(SPh)₂ (see below crystallographic data).

An alternative obtainment of β-Pb(SPh)₂

Actually, β -phase crystals were, at first, obtained, through another way, discovered by serendipity: we were attempting to prepare the compound $[(S)-C_6H_5-C(-CH_3)-NH_3]^+$, $[Pb(SPh)_3]^-$, using the procedure described by Dean *et al.*^{6b} for the synthesis of $[(C_6H_5)_4P]^+$, $[Pb(SPh)_3]^-$ but replacing the reactant tetraphenylphosphonium chloride by (S)-1-phenyl ethylammonium chloride. This attempt failed to afford the desired compound but gave instead β -Pb(SPh)₂ in the form of analysable monocrystals, in low yield:

Benzenethiol (3.20 g, 29 mmol) and sodium hydroxide beads (1.04 g, 26 mmol) were successively dissolved in methanol (20 mL), then was added, under stirring, a solution of lead (II) nitrate (2.84 g, 8.6 mmol) in water (10 mL), resulting in the precipitation of a yellow solid. To this mixture was added, at first, a solution of (S)-C₆H₅-C(-CH₃)-NH₃]⁺, Cl⁻ (1.38 g, 8.8 mmol) (previously prepared from the action of HCl on (S)-C₆H₅-C(-CH₃)-NH₂ in diethyl ether, mp 170°C) in methanol (60mL) and then 120 mL of aqueous acetonitrile (CH₃CN/H₂O: 5/1, v/v). The mixture was refluxed, under stirring, for 20 min, then filtered while hot and the insoluble part was discarded. The filtrate was allowed to cool down leading to the precipitation of new crystals which, after one night, were collected by filtration (0.42 g, yield 12%) and shown, by single crystal and powder X-ray analysis, to be β -Pb(SPh)₂.

However, the result of this experiment probably depends of factors difficult to control such as the exact speed of cooling of the reaction mixture and is not reproducible: another attempt afforded α -Pb(SPh)₂ in 37% yield.

Electronic Supplementary Material for CrystEngComm This journal is © The Royal Society of Chemistry 2008

CRISTALLOGRAPHIC DATA

1 - Crystallographic data for α-Pb(S-C₆H₅)₂

<u>a- checkcif report for α-Pb(S-C₆H₅)₂</u>

Bond precision: C-C = 0.0090 AWavelength=0.71073 Cell: a=27.0798(13) b=5.7437(3) c=7.452(3) alpha=90 beta=90 gamma=90 Temperature: 293 K Calculated Reported Volume 1159.1(5) 1159.0(4)Space group Рmсn Pmcn --P 2n 2a Hall group ? Moiety formula C12 H10 Pb S2 ? Sum formula C12 H10 Pb S2 C12 H10 Pb S2 Mr 425.54 425.51 2.439 2.439 Dx,g cm-3 7 4 4 Mu (mm-1) 14.876 14.880 F000 784.0 784.0 F000' 772.45 36,7,10 h,k,lmax 36,7,10 Nref 1565 1558 0.135,0.304 0.113,0.300 Tmin,Tmax Tmin' 0.044 Correction method= AbsCorr=MULTI-SCAN Data completeness= Theta(max) = 29.000Ratio = 0.996R(reflections) = 0.0357(wR2(reflections) = 0.0627(1558) 987) S = 1.033 Npar= 79 The following ALERTS were generated. Each ALERT has the format test-name ALERT alert-type alert-level. Click on the hyperlinks for more details of the test. Alert level A PLAT761 ALERT 1 A CIF Contains no X-H Bonds PLAT762 ALERT 1 A CIF Contains no X-Y-H or H-Y-H Angles ... ? **Q**Alert level B PLAT230 ALERT 2 B Hirshfeld Test Diff for S1A - S1B 14.35 su PLAT232 ALERT 2 B Hirshfeld Test Diff (M-X) Pb - S1A 13.70 su

Electronic Supplementary Material for CrystEngComm This journal is © The Royal Society of Chemistry 2008

PLAT128	ALERT	4	С	Non-standard setting of Space-group Pnma Pmcn
PLAT152	ALERT	1	С	Supplied and Calc Volume s.u. Inconsistent ?
PLAT194	ALERT	1	С	Missing _cell_measurement_reflns_used datum
PLAT195	ALERT	1	С	Missing _cell_measurement_theta_max datum . ?
PLAT196	ALERT	1	С	Missing _cell_measurement_theta_min datum ?
PLAT232	ALERT	2	С	Hirshfeld Test Diff (M-X) Pb - S1B 5.03 su
PLAT242	ALERT	2	С	Check Low Ueq as Compared to Neighbors for S1A
PLAT301	ALERT	3	С	Main Residue Disorder 12.00 Perc.
PLAT342	ALERT	3	С	Low Bond Precision on C-C Bonds (x 1000) Ang . 9
PLAT366		2	a	
	ADBILI	4	C	Short? $C(sp?)-C(sp?)$ Bond $C1$ - $C2$ 1.38 Ang.
PLAT366	ALERT	2	C	Short? $C(sp?)-C(sp?)$ Bond $C1$ - $C2$ 1.38 Ang. Short? $C(sp?)-C(sp?)$ Bond $C1$ - $C6$ 1.37 Ang.
PLAT366 PLAT366	ALERT ALERT	2 2 2	C C C	Short? C(sp?)-C(sp?) Bond C1 - C2 1.38 Ang. Short? C(sp?)-C(sp?) Bond C1 - C6 1.37 Ang. Short? C(sp?)-C(sp?) Bond C2 - C3 1.37 Ang.
PLAT366 PLAT366 PLAT720	ALERT ALERT ALERT	2 2 2 4		Short? $C(sp?)-C(sp?)$ Bond $C1$ - $C2$ 1.38 Ang.Short? $C(sp?)-C(sp?)$ Bond $C1$ -C61.37 Ang.Short? $C(sp?)-C(sp?)$ Bond $C2$ -C31.37 Ang.Number of Unusual/Non-Standard Label(s)5

<u>b- Table 1. Crystal data and structure refinement for α-Pb(S-C₆H₅)₂</u>

Empirical formula	C12 H10 Pb S2
Formula weight	425.51
Temperature	293(2) K
Wavelength	0.71073 A
Crystal system, space group	orthorhombic, Pmcn
Unit cell dimensions	a = 27.0798(13) A alpha = 90 deg.
	b = 5.7437(3) A beta = 90 deg.
	c = 7.452(3) A gamma = 90 deg.
Volume	1159.0(4) A ³
Z, Calculated density	4, 2.439 Mg/m ³
Absorption coefficient	14.878 mm^-1
F(000)	784
Crystal size	0.20 x 0.12 x 0.08 mm
Thete way for data collection	4 21 to 20 00 dog
limiting indiana	4.21 to 29.00 deg.
Deflections collected (unique	-36<=11<=30, $-7<=K<=7$, $-10<=1<=10$
Completeness to theta - 20.00	11520 / 1558 [R(111c) = 0.0632]
Absorption correction	JJ.O %
Absorption correction	Full matrix logat aguarag on E^2
Data (regtraintg (parameterg	$\frac{1}{1} = \frac{1}{1} = \frac{1}$
Coodport of fit on F^2	1 022
Final D indigog [Is2gigma(I)]	1 - 0 0257 $102 - 0 0527$
Pindigog (all data)	RI = 0.0557, WRZ = 0.0527
K INVICES (all udld)	KI = 0.0901, WKZ = 0.0027
hargest diff. peak and note	1.000 and -1.010 E.A -3

Electronic Supplementary Material for CrystEngComm This journal is © The Royal Society of Chemistry 2008

$2 - Crystallographic data for \beta-Pb(S-C_6H_5)_2$

<u>a- checkcif report for β-Pb(S-C₆H₅)₂</u>

Bond pi	recision:	C-C = 0.0126 A	Wavelength=0.71073					
Cell:	a=27.1492(11) b=6.0119(2)	c=7.2935(3)					
	alpha=90	beta=90	gamma=90					
		Calculated	Reported					
Volume		1190.43(8)	1190.43(8)					
Space group		P21ca	Р 21 с а					
Hall gi	coup	P -2ac 2a	?					
Moiety	formula	C12 H10 Pb S2	?					
Sum for	rmula	C12 H10 Pb S2	C12 H10 Pb S2					
Mr		425.54	425.54					
Dx,g cm	n-3	2.374	2.374					
Z		4	4					
Mu (mm-	-1)	14.485	14.485					
F000		784.0	784.0					
F000'		772.45						
h,k,lma	ax	35,7,9	35,7,9					
Nref		1404(2746)	2205					
Tmin,Tn	nax	0.135,0.235	0.103,0.282					
Tmin'		0.060						
Correct	tion method	= AbsCorr=MULTI-SCA	N					
Data co	ompleteness	= 1.57(0.80) Theta	(max) = 27.520					
R(refle	ections) = 0	.0270(1822) wi	R2(reflections) = 0.0454(2205)					
S = 1.0)32	Npar= 136						
The fol	llowing ALE	RTS were generated.	Each ALERT has the format					
	test-name_	ALERT_alert-type_al	ert-level.					
Click d	on the hype	rlinks for more det	ails of the test.					
Ø Aler	t level	Δ						
PLAT761	ALERT 1 A	CIF Contains no X-	H Bonds ?					
PLAT762	ALERT 1 A	CIF Contains no X-	Y-H or H-Y-H Angles ?					
Ale:	ct level	C						
ABSTY02	2 ALERT 1 C	An _exptl_absorpt	_correction_type has been given without					
	a lit	erature citation. I	his should be contained in the					
	_expt	l_absorpt_process_c	etails field.					
	Absorption correction given as multi-scan							
PLAT062	$\frac{PLATO62}{PLATO62} ALERT 4 C Rescale T(min) & T(max) by 0.83$							
PLAT125	5_ALERT 4 C	No _symmetry space	_group_name_Hall Given ?					
PLAT128	ALERT 4 C	Non-standard setti	ng of Space group Pca21 . P21ca					
PLAT241	LALERT 2 C	Check High Ue	q as Compared to Neighbors for S1					
PLAT342_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang . 13								

<u>b</u> - Table 1. Crystal data and structure refinement for β -Pb(S-C₆H₅)₂

Empirical formula	C12 H10 Pb S2
Formula weight Temperature Wavelength Crystal system, space group Unit cell dimensions b = 6. c = 7.1	425.54 293(2) K 0.71073 A orthorhombic, P 21 c a .1492(11) A alpha = 90.000(4) deg. 0119(2) A beta = 90.000(4) deg. 2935(3) A gamma = 90.000(3) deg.
Volume	1190.43(8) A ³
Z, Calculated density Absorption coefficient F(000) Crystal size Theta range for data collection Limiting indices Reflections collected / unique Completeness to theta = 27.52 Absorption correction	<pre>4, 2.374 Mg/m³ 14.485 mm⁻¹ 784 0.2 x 0.12 x 0.08 mm 3.39 to 27.52 deg. -24<=h<=35, -7<=k<=7, -9<=1<=9 10365 / 2205 [R(int) = 0.0458] 99.8 % Multi-scan</pre>
Refinement method Data / restraints / parameters Goodness-of-fit on F ² Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter Largest diff. peak and hole	<pre>Full-matrix least-squares on F² 2205 / 1 / 136 1.032 R1 = 0.0270, wR2 = 0.0427 R1 = 0.0422, wR2 = 0.0454 0.123(8) 0.720 and -0.849 e.A⁻³</pre>

3 - X-ray powder diffraction

Powder X-ray diffraction measurements were carried out on a D8 Bruker diffractometer using Cu-K $\alpha_{1,2}$ radiation, equipped with a linear Vantec super speed detector. Powder X-Ray patterns of samples of α -Pb(SPh)₂ and β -Pb(SPh)₂ showed that all reflections are indexed in the unit cells obtained from X-ray diffraction of the single crystal studies (X-ray patterns given in the main text).

DSC ANALYSIS

Differential scanning calorimetry (DSC) measurements were performed on a DSC-2010 TA Instruments system.

DSC analysis were carried out by loading sample (approximately 5 mg) in a nearly hermetic aluminum capsule which was then located in the system unit (nitrogen atmosphere) and heated from room temperature up to 450° C with a 5°C/min ramp rate.

SHG EXPERIMENTS

The properties of the SHG were studied for a fundamental wavelength at 1064 nm from a Q-switch Nd:YAG laser (Model Continuum Leopard D-10) with a pulse duration of 15 ps and a mean power density of 1.0 mJ per pulse at the repetition frequency of 10 Hz. The energy of the fundamental beam was changed with a half-wave plate and a Glan polarizer. The beam was focused on the sample passing through a convergent lens with a focal length of 250 mm.

The crystals of the studied samples and POM were crushed and sieved in order to assure almost the same crystallites size (range of 125-250 μ m). The studied powder was placed between two microscope slides. All experiments were done at the same conditions and the amount of used material of studied samples was the same (40 mg).

The SH signal was detected by a photomultiplier (Hamamatsu R1828-01), then integrated by a box-car and processed by a LabVIEW program.

Experimental setup of SHG: BS: beam splitter, $\lambda/2$: half wave plate, P: Glan polarizer, L: convergent lens (250 mm), F: selective spectral filter (532 nm), Phs: synchronization photodiode, Phc: control photodiode, PMT: photomultiplier.