SUPPORTING INFORMATION

New microporous copper(II) coordination polymers based upon bifunctional 1,2,4-triazole/tetrazolate bridges

O. A. Bondar, L. V. Lukashuk, A. B. Lysenko, H. Krautscheid, E. B. Rusanov, A. N. Chernega, and K. V. Domasevitch.

Figure SI_1. IR spectra for complex Cu(L1)₂Cl₂·12H₂O (3).

Figure SI_2. TGA, DTA and DSC traces of the complex Cu(**L1**)₂Cl₂·12H₂O (**3**) measured in the 20-800°C temperature range.

Figure SI_3. Thermodiffractograms for 3 were measured in the 20-400°C temperature range.

Figure SI_4. Atom labelling scheme for structure $[Cu(\mu_2-L1)_3]PO_3F$ (1) (1) (20% ellipsoids, hydrogen atoms omitted for clarity). The uncoordinated PO₃F dianion was refined with fixed geometry of tetrahedral PO₄. The anions are disordered over two positions (occupancy factor $\frac{1}{2}$).

Figure SI_5. Atom labelling scheme for structure $Cu(L1)_5(NO_3)_4 \cdot 2H_2O(2)$ (30% ellipsoids, hydrogen atoms omitted for clarity).

Figure SI_6. Atom labelling scheme for structure $Cu(L1)_2Cl_2\cdot 12H_2O$ (3) (30% ellipsoids, hydrogen atoms omitted for clarity). The uncoordinated chloride anions are statistically disordered in the framework (occupancy factor 1/8; i: 0.5-x, 0.5-y, -0.5+z; ii: 0.5-x, -0.5+y, 1.5-z).

Electronic Supplementary Material for CrystEngComm This journal is (c) The Royal Society of Chemistry 2008

Figure SI_7. Atom labelling scheme for structure $Cu(L1)_2Br_2 \cdot 12H_2O$ (4) (30% ellipsoids, hydrogen atoms omitted for clarity). The uncoordinated bromide anions and water molecules are are located within the framework and statistically disordered (occupancy factors: for Br2A, Br2B 0.13; for O1, O3 and O2 are 0.5 and 0.25, respectively). The phenylene linker and uncoordinated triazole termini are disordered over two positions along the N2-N5 direction (partial contributions 0.5).

Figure SI_8. Atom labelling scheme for structure $Cu_4(\mu_2-OH)_2(L1)_5(H_2O)_2(CF_3SO_3)_6\cdot 10H_2O$ (5), (50% ellipsoids, the uncoordinated OTf- anions, water molecules and hydrogen atoms omitted for clarity).

Electronic Supplementary Material for CrystEngComm This journal is (c) The Royal Society of Chemistry 2008

Figure SI_9. Atom labelling scheme for structural fragment in (5), showing disordering water molecules and $CF_3SO_3^-$ (30% ellipsoids, hydrogen atoms omitted for clarity).

Figure SI_10. A view of the two interpenetrating nets of compound $Cu_3(\mu_2 - OH)_2(L1)(H_2O)_2(SO_4)_2$ (6) (sulfates shown as polyhedra).

Electronic Supplementary Material for CrystEngComm This journal is (c) The Royal Society of Chemistry 2008

Figure SI_11. Atom labelling scheme for structure $Cu(\mu_4-L1)(\mu_2-SO_4)\cdot 6H_2O$ (7). The coordinated sulfate anions are disordered along the twofold orientation axis with occupancy factor of $\frac{1}{2}$ (50% ellipsoids, hydrogen atoms omitted for clarity).

Figure SI_12. Atom labelling scheme for structure $Cu_2(L2)_3Cl\cdot 12H_2O$ (8). The uncoordinated chloride anions and water molecules are disordered in the lattice; the phenylene fragments are disordered over two positions (partial contributions 0.6 and 0.4; 40% ellipsoids).