Site-selective supramolecular synthesis of halogen-bonded cocrystals incorporating the photoactive azo group[†]

David Fox,^a Pierangelo Metrangolo,^{*a} Dario Pasini,^b Tullio Pilati,^c Giuseppe Resnati,^{*a,c} Giancarlo Terraneo^a

ELECTRONIC SUPPLEMENTARY INFORMATION

Experimental

General methods: Commercial HPLC-grade solvents were used without further purification. Starting materials were purchased from Sigma-Aldrich and Apollo Scientific. ¹H NMR spectra were recorded at ambient temperature using CDCl₃ as solvent on a Bruker AV500 spectrometer. ¹⁹F NMR spectra were recorded on Bruker AC250 spectrometer, CDCl₃ was used as solvent and CFCl₃ or bis(2,2,2-trifluoroethyl) were used as internal standard. All chemical shift values are given in ppm. IR spectra were obtained using a Perkin–Elmer 2000 FTIR spectrometer equipment with U-ATR device. Absorptions are specified in wavenumbers, which have been rounded to the nearest 1 cm⁻¹ by automatic assignment. Selected IR data of the starting modules are reported to show the changes that occur upon the formation of cocrystals **3a-b**. Melting points were determined with DSC analyses using Mettler Toledo DSC 823e.

General procedure: formation of cocrystal 3a and **3b**: Cocrystals **3a** and **3b** were obtained by dissolving one, five or ten, equivalents of diiodoperfluoroalkane **1a,b** and one equivalent of *trans*-4,4'- azobis(pyridine) **2** in methanol at room temperature in a clear borosilicate glass vial. The methanol was allowed to diffuse slowly (two day) in a closed cylindrical wide-mouth bottle containing paraffine oil at room temperature.

E-mail: pierangelo.metrangolo@polimi.it; giuseppe.resnati@polimi.it

^a NFMLab – DCMIC "G. Natta", Politecnico di Milano, 7, via Mancinelli, I-20131 Milan, Italy. Fax: +39 02 2399 3080; Tel: +39 02 2399 3041 (P. M.), 3032 (G. R.);

^b Department of Organic Chemistry, University of Pavia, Viale Taramelli 10,27100 Pavia, Italy.

 ^c CNR–ISTM, University of Milan, Via C. Golgi 19, 20133 Milan, Italy.
 † Electronic Supplementary Information (ESI) available: General procedures, ¹H and ¹⁹F NMR, IR spectra, and crystal data for 3a,b.
 See http://dx.doi.org/10.1039/b000000x/

Supplementary Material (ESI) for *CrystEngComm* This journal is © The Royal Society of Chemistry 2008

Cocrystal 3a: Perfluoro-1,6-diiodohexane (**1a**) and 4,4'-azobis(pyridine) (**2**): Red-brown solid; m.p.= 125 °C (DSC analysis); IR (v.selected bands): pure perfluoro-1,6-diiodohexane **1a**: 1121, 1087 cm⁻¹; pure 4,4'-azobis(pyridine) **2**: 3091, 3039, 1586, 1412, 989 cm⁻¹; co-crystal **3a**: 3107, 3043, 1588, 1412, 1117, 1077, 998 cm⁻¹; ¹⁹F-NMR pure perfluoro-1,6-diiodohexane **1a**: $\delta_{(ICF2CF2CF2)2}$ = -60.24, $\delta_{(ICF2CF2CF2)2}$ = -114.27, $\delta_{(ICF2CF2CF2)2}$ = -122.13; cocrystal **3a**: $\Delta\delta_{F}$ = δ_{pure1a} - δ_{3a} (0.05 M), $\Delta\delta_{(ICF2CF2CF2)2}$ = 0.11, $\Delta\delta_{(ICF2CF2CF2)2}$ = 0.01, $\Delta\delta_{(ICF2CF2CF2)2}$ = 0.01; $\Delta\delta_{F}$ = δ_{pure1a} - δ_{3a} (0.03 M), $\Delta\delta_{(ICF2CF2CF2)2}$ = 0.11, $\Delta\delta_{(ICF2CF2CF2)2}$ = 0.00.

Cocrystal 3b: Perfluoro-1,8-diiodooctane (**1b**) and 4,4'-azobis(pyridine) (**2**): Red-brown solid; m.p.= 130 °C (DSC analysis); IR (v.selected bands): pure perfluoro-1,8-diiodoocatne **1b**: 1147, 1055 cm⁻¹; cocrystal **3b**: 3107, 3042, 1588, 1412, 1138, 1054, 997 cm⁻¹; ¹⁹F-NMR pure perfluoro-1,8-diiodoocatane **1b**: $\delta_{(ICF2CF2CF2CF2)2}$ = -60.33, $\delta_{(ICF2CF2CF2CF2)2}$ = -114.28, $\delta_{(ICF2CF2CF2CF2)2}$ = -122.10 $\delta_{(ICF2CF2CF2CF2)2}$ = -122.91; cocrystal **3b**: $\Delta\delta_{F}=\delta_{pure1b} - \delta_{3b}$ (0.05 M), $\Delta\delta_{(ICF2CF2CF2CF2)2}$ = 0.18, $\Delta\delta_{(ICF2CF2CF2CF2)2}$ = 0.04, $\Delta\delta_{(ICF2CF2CF2)2}$ = 0.02, $\Delta\delta_{(ICF2CF2CF2)2}$ = 0.01; $\Delta\delta_{F}=\delta_{pure1b} - \delta_{3b}$ (0.03 M), $\Delta\delta_{(ICF2CF2CF2)2}$ = 0.11, $\Delta\delta_{(ICF2CF2CF2)2}$ = 0.02, $\Delta\delta_{(ICF2CF2CF2)2}$ = 0.01, $\Delta\delta_{(ICF2CF2CF2)2}$ = 0.00.

NMR Experiments: To establish the **1** : **2** ratio in co-crystals **3a,b**, their ¹H and ¹⁹F NMR spectra were registered in the presence of 2,2,2-trifluoroethyl ether as an internal standard. On calibrating integration parameters so that in the ¹H NMR spectrum the CH₂O quartet of 2,2,2-trifluoroethyl ether was corresponding to four and in the ¹⁹F NMR spectrum the CF₃ triplet of 2,2,2-trifluoroethyl ether was corresponding to six, the ratio of the NCH doublet area (deriving from **2**) and the CF₂I triplet area (deriving from **1**) is one thus revealing that the **1** : **2** ratio in **3a,b** is one. This **1** : **2** ratio was observed for all solids obtained from solutions where the **1** : **2** ratio was varied from **1** : **1** to **10** : **1**.

¹H NMR (500 MHz, CDCl₃ + (CF₃CH₂)₂O) cocrystal **3a**

FT-IR spectra.

Cocrystal 3a (4000-500 cm⁻¹)

Supplementary Material (ESI) for *CrystEngComm* This journal is © The Royal Society of Chemistry 2008

Cocrystal 3a (1700-550 cm⁻¹)

Supplementary Material (ESI) for *CrystEngComm* This journal is © The Royal Society of Chemistry 2008

Cocrystal 3b (3300-2500 cm⁻¹)

6

Crystal data and structure refinement for 3a.

Chemical formula (moiety)	$C_{6}F_{12}I_{2}{\cdot}C_{10}H_{8}N_{4}$	
Chemical formula (total)	$C_{16}H_8F_{12}I_2N_4\\$	
Formula weight	738.06	
Temperature	153(2) K	
Radiation, wavelength	ΜοΚα, 0.71073 Å	
Crystal system, space group	triclinic, P1	
Unit cell parameters	a = 5.2392(5)Å	$\alpha = 94.526(8)^{\circ}$
	b = 8.8344(9) Å	$\beta = 95.701(7)^{\circ}$
	c = 11.5520(13) Å	$\gamma = 91.302(8)^{\circ}$
Cell volume	530.13(10) Å ³	
Z	1	
Calculated density	2.312 g/cm^3	
Absorption coefficient μ	3.083 mm ⁻¹	
<i>F</i> (000)	346	
Crystal colour and size	red, $0.42 \times 0.21 \times 0.20 \text{ mm}^3$	
Reflections for cell refinement	9860 (<i>θ</i> range 2.3 to 29.9°)	
Data collection method	Bruker APEX 2000 CCD diffractometer	
	DIUKEI AFEA 2000 CCD uiii	actonicter
	ϕ and ω scans	actometer
θ data collection	ϕ and ω scans < 30.0°	actometer
θ data collection Index ranges	ϕ and ω scans < 30.0° h - 7 to 7, $k - 12$ to 12, $l - 16$ to	o 16
θ data collection Index ranges Completeness to θ = 30.0°	ϕ and ω scans < 30.0° h - 7 to 7, $k - 12$ to 12, $l - 16$ to 99.5 %	o 16
θ data collection Index ranges Completeness to $\theta = 30.0^{\circ}$ Reflections collected	ϕ and ω scans < 30.0° h - 7 to 7, $k - 12$ to 12, $l - 16$ to 99.5 % 12026	o 16
θ data collection Index ranges Completeness to θ = 30.0° Reflections collected Independent reflections	ϕ and ω scans $< 30.0^{\circ}$ h - 7 to 7, $k - 12$ to 12, $l - 16$ to 99.5 % 12026 3089 (R _{int} = 0.0239)	o 16
θ data collection Index ranges Completeness to θ = 30.0° Reflections collected Independent reflections Reflections with $F^2>2\sigma$	ϕ and ω scans $< 30.0^{\circ}$ h - 7 to 7, $k - 12$ to 12, $l - 16$ to 99.5 % 12026 3089 (R _{int} = 0.0239) 2970	o 16
θ data collection Index ranges Completeness to $\theta = 30.0^{\circ}$ Reflections collected Independent reflections Reflections with $F^2 > 2\sigma$ Absorption correction	ϕ and ω scans $< 30.0^{\circ}$ h - 7 to 7, $k - 12$ to 12, $l - 16$ to 99.5 % 12026 3089 (R _{int} = 0.0239) 2970 multi-scan	o 16
θ data collection Index ranges Completeness to θ = 30.0° Reflections collected Independent reflections Reflections with $F^2 > 2\sigma$ Absorption correction Min. and max. transmission	ϕ and ω scans $< 30.0^{\circ}$ h - 7 to 7, $k - 12$ to 12, $l - 16$ to 99.5 % 12026 3089 (R _{int} = 0.0239) 2970 multi-scan 0.4062 and 0.5488	o 16
θ data collection Index ranges Completeness to $\theta = 30.0^{\circ}$ Reflections collected Independent reflections Reflections with $F^2 > 2\sigma$ Absorption correction Min. and max. transmission Structure solution	ϕ and ω scans $< 30.0^{\circ}$ h - 7 to 7, $k - 12$ to 12, $l - 16$ to 99.5 % 12026 3089 (R _{int} = 0.0239) 2970 multi-scan 0.4062 and 0.5488 direct methods	o 16
θ data collection Index ranges Completeness to $θ = 30.0^{\circ}$ Reflections collected Independent reflections Reflections with $F^2 > 2σ$ Absorption correction Min. and max. transmission Structure solution Refinement method	ϕ and ω scans $< 30.0^{\circ}$ h - 7 to 7, $k - 12$ to 12, $l - 16$ to 99.5 % 12026 3089 (R _{int} = 0.0239) 2970 multi-scan 0.4062 and 0.5488 direct methods Full-matrix least-squares on F	o 16
θ data collectionIndex rangesCompleteness to $\theta = 30.0^{\circ}$ Reflections collectedIndependent reflectionsReflections with $F^2 > 2\sigma$ Absorption correctionMin. and max. transmissionStructure solutionRefinement methodData / restraints / parameters	ϕ and ω scans $< 30.0^{\circ}$ h - 7 to 7, $k - 12$ to 12, $l - 16$ to 99.5 % 12026 3089 (R _{int} = 0.0239) 2970 multi-scan 0.4062 and 0.5488 direct methods Full-matrix least-squares on F 3089 / 0 / 170	o 16
θ data collection Index ranges Completeness to $θ = 30.0^{\circ}$ Reflections collected Independent reflections Reflections with $F^2 > 2 σ$ Absorption correction Min. and max. transmission Structure solution Refinement method Data / restraints / parameters Final <i>R</i> indices $[F^2 > 2 σ]$	ϕ and ω scans $< 30.0^{\circ}$ h - 7 to 7, $k - 12$ to 12, $l - 16$ to 99.5 % 12026 3089 (R _{int} = 0.0239) 2970 multi-scan 0.4062 and 0.5488 direct methods Full-matrix least-squares on F 3089 / 0 / 170 R1 = 0.0315, wR2 = 0.0807	2 2 actoricite
θ data collectionIndex rangesCompleteness to $\theta = 30.0^{\circ}$ Reflections collectedIndependent reflectionsReflections with $F^2 > 2\sigma$ Absorption correctionMin. and max. transmissionStructure solutionRefinement methodData / restraints / parametersFinal R indices $[F^2 > 2\sigma]$ R indices (all data)	ϕ and ω scans $< 30.0^{\circ}$ h - 7 to 7, $k - 12$ to 12, $l - 16$ to 99.5 % 12026 3089 (R _{int} = 0.0239) 2970 multi-scan 0.4062 and 0.5488 direct methods Full-matrix least-squares on F ² 3089 / 0 / 170 R1 = 0.0315, wR2 = 0.0807 R1 = 0.0325, wR2 = 0.0813	2 2 actorneter
θ data collection Index ranges Completeness to $θ = 30.0^{\circ}$ Reflections collected Independent reflections Reflections with $F^2 > 2 σ$ Absorption correction Min. and max. transmission Structure solution Refinement method Data / restraints / parameters Final <i>R</i> indices [F ² >2 σ] R indices (all data) Goodness-of-fit on F^2	ϕ and ω scans $< 30.0^{\circ}$ h - 7 to 7, $k - 12$ to 12, $l - 16$ to 99.5 % 12026 3089 (R _{int} = 0.0239) 2970 multi-scan 0.4062 and 0.5488 direct methods Full-matrix least-squares on F° 3089 / 0 / 170 R1 = 0.0315, $wR2 = 0.0807R1 = 0.0325$, $wR2 = 0.08131.121$	2 2 actorneter
$ θ $ data collection Index ranges Completeness to $θ = 30.0^{\circ}$ Reflections collected Independent reflections Reflections with $F^2 > 2σ$ Absorption correction Min. and max. transmission Structure solution Refinement method Data / restraints / parameters Final <i>R</i> indices [F ² >2σ] R indices (all data) Goodness-of-fit on F^2 Largest and mean shift/s.u.	ϕ and ω scans $< 30.0^{\circ}$ h - 7 to 7, $k - 12$ to 12, $l - 16$ to 99.5 % 12026 3089 (R _{int} = 0.0239) 2970 multi-scan 0.4062 and 0.5488 direct methods Full-matrix least-squares on F ² 3089 / 0 / 170 R1 = 0.0315, wR2 = 0.0807 R1 = 0.0325, wR2 = 0.0813 1.121 0.001 and 0.000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Crystal data and structure refinement for 3b.

Chemical formula (moiety)	$C_{10}H_8N_4{\cdot}C_8F_{16}I_2$	
Chemical formula (total)	$C_{18}H_8F_{16}I_2N_4\\$	
Formula weight	838.08	
Temperature	153(2) K	
Radiation, wavelength	MoKα, 0.71073 Å	
Crystal system, space group	triclinic, P1	
Unit cell parameters	a = 5.2482(7) Å	$\alpha = 84.316(7)^{\circ}$
	b = 8.6925(14) Å	$\beta = 86.245(7)^{\circ}$
	c = 13.289(2) Å	$\gamma = 88.241(8)^{\circ}$
Cell volume	601.79(16) Å ³	
Ζ	1	
Calculated density	2.313 g/cm ³	
Absorption coefficient μ	2.754 mm^{-1}	
<i>F</i> (000)	394	
Crystal colour and size	red, $0.36 \times 0.10 \times 0.08 \text{ mm}^3$	
Reflections for cell refinement	6523 (<i>θ</i> range 2.4 to 29.4°)	
Data collection method	Bruker APEX 2000 CCD diffractometer	
	ϕ and ω scans	
θ data collection	ϕ and ω scans < 30.0°	
heta data collection Index ranges	 φ and ω scans < 30.0° h −7 to 7, k −12 to 12, l −18 to 	0 18
θ data collection Index ranges Completeness to $\theta = 30.0^{\circ}$	 φ and ω scans < 30.0° h -7 to 7, k -12 to 12, l -18 to 99.2 % 	0 18
θ data collection Index ranges Completeness to $\theta = 30.0^{\circ}$ Reflections collected	 φ and ω scans < 30.0° h -7 to 7, k -12 to 12, l -18 to 99.2 % 12848 	0 18
θ data collection Index ranges Completeness to $\theta = 30.0^{\circ}$ Reflections collected Independent reflections	ϕ and ω scans < 30.0° h - 7 to 7, $k - 12$ to 12, $l - 18$ to 99.2 % 12848 3491 ($R_{int} = 0.0228$)	0 18
θ data collection Index ranges Completeness to $\theta = 30.0^{\circ}$ Reflections collected Independent reflections Reflections with $F^2 > 2\sigma$	ϕ and ω scans < 30.0° h - 7 to 7, $k - 12$ to 12, $l - 18$ to 99.2 % 12848 3491 ($R_{int} = 0.0228$) 3219	0 18
θ data collection Index ranges Completeness to $\theta = 30.0^{\circ}$ Reflections collected Independent reflections Reflections with $F^2 > 2\sigma$ Absorption correction	ϕ and ω scans < 30.0° h - 7 to 7, $k - 12$ to 12, $l - 18$ to 99.2 % 12848 3491 ($R_{int} = 0.0228$) 3219 semi-empirical from equivalent	o 18 nts
θ data collection Index ranges Completeness to $\theta = 30.0^{\circ}$ Reflections collected Independent reflections Reflections with $F^2 > 2\sigma$ Absorption correction Min. and max. transmission	ϕ and ω scans $< 30.0^{\circ}$ h - 7 to 7, $k - 12$ to 12, $l - 18$ to 99.2 % 12848 3491 ($R_{int} = 0.0228$) 3219 semi-empirical from equivalent 0.6761 and 0.8187	o 18 nts
θ data collection Index ranges Completeness to $\theta = 30.0^{\circ}$ Reflections collected Independent reflections Reflections with $F^2 > 2\sigma$ Absorption correction Min. and max. transmission Structure solution	ϕ and ω scans $< 30.0^{\circ}$ h - 7 to 7, $k - 12$ to 12, $l - 18$ to 99.2 % 12848 3491 ($R_{int} = 0.0228$) 3219 semi-empirical from equivalent 0.6761 and 0.8187 direct methods	o 18 nts
θ data collection Index ranges Completeness to $\theta = 30.0^{\circ}$ Reflections collected Independent reflections Reflections with $F^2 > 2\sigma$ Absorption correction Min. and max. transmission Structure solution Refinement method	ϕ and ω scans $< 30.0^{\circ}$ h - 7 to 7, $k - 12$ to 12, $l - 18$ to 99.2 % 12848 3491 ($R_{int} = 0.0228$) 3219 semi-empirical from equivalent 0.6761 and 0.8187 direct methods Full-matrix least-squares on F	o 18 nts 2
θ data collection Index ranges Completeness to $\theta = 30.0^{\circ}$ Reflections collected Independent reflections Reflections with $F^2 > 2\sigma$ Absorption correction Min. and max. transmission Structure solution Refinement method Data / restraints / parameters	ϕ and ω scans $< 30.0^{\circ}$ h - 7 to 7, $k - 12$ to 12, $l - 18$ to 99.2 % 12848 3491 ($R_{int} = 0.0228$) 3219 semi-empirical from equivalent 0.6761 and 0.8187 direct methods Full-matrix least-squares on F 3491 / 0 / 197	o 18 nts 2
θ data collection Index ranges Completeness to $\theta = 30.0^{\circ}$ Reflections collected Independent reflections Reflections with $F^2 > 2\sigma$ Absorption correction Min. and max. transmission Structure solution Refinement method Data / restraints / parameters Final <i>R</i> indices [$F^2 > 2\sigma$]	ϕ and ω scans $< 30.0^{\circ}$ h - 7 to 7, $k - 12$ to 12, $l - 18$ to 99.2 % 12848 3491 ($R_{int} = 0.0228$) 3219 semi-empirical from equivaler 0.6761 and 0.8187 direct methods Full-matrix least-squares on F 3491 / 0 / 197 R1 = 0.0249, wR2 = 0.0628	o 18 nts 2
θ data collection Index ranges Completeness to $\theta = 30.0^{\circ}$ Reflections collected Independent reflections Reflections with $F^2 > 2\sigma$ Absorption correction Min. and max. transmission Structure solution Refinement method Data / restraints / parameters Final <i>R</i> indices $[F^2 > 2\sigma]$ <i>R</i> indices (all data)	ϕ and ω scans $< 30.0^{\circ}$ h - 7 to 7, $k - 12$ to 12, $l - 18$ to 99.2 % 12848 3491 ($R_{int} = 0.0228$) 3219 semi-empirical from equivalent 0.6761 and 0.8187 direct methods Full-matrix least-squares on F 3491 / 0 / 197 R1 = 0.0249, wR2 = 0.0628 R1 = 0.0278, wR2 = 0.0642	o 18 nts 2
θ data collection Index ranges Completeness to $\theta = 30.0^{\circ}$ Reflections collected Independent reflections Reflections with $F^2 > 2\sigma$ Absorption correction Min. and max. transmission Structure solution Refinement method Data / restraints / parameters Final <i>R</i> indices $[F^2 > 2\sigma]$ <i>R</i> indices (all data) Goodness-of-fit on F^2	ϕ and ω scans $< 30.0^{\circ}$ h - 7 to 7, $k - 12$ to 12, $l - 18$ to 99.2 % 12848 3491 ($R_{int} = 0.0228$) 3219 semi-empirical from equivalent 0.6761 and 0.8187 direct methods Full-matrix least-squares on F 3491 / 0 / 197 R1 = 0.0249, wR2 = 0.0628 R1 = 0.0278, wR2 = 0.0642 1.067	o 18 nts 2
θ data collection Index ranges Completeness to $\theta = 30.0^{\circ}$ Reflections collected Independent reflections Reflections with $F^2 > 2\sigma$ Absorption correction Min. and max. transmission Structure solution Refinement method Data / restraints / parameters Final <i>R</i> indices [$F^2 > 2\sigma$] <i>R</i> indices (all data) Goodness-of-fit on F^2 Largest and mean shift/s.u.	ϕ and ω scans $< 30.0^{\circ}$ h - 7 to 7, $k - 12$ to 12, $l - 18$ to 99.2 % 12848 3491 ($R_{int} = 0.0228$) 3219 semi-empirical from equivaler 0.6761 and 0.8187 direct methods Full-matrix least-squares on F 3491 / 0 / 197 R1 = 0.0249, wR2 = 0.0628 R1 = 0.0278, wR2 = 0.0642 1.067 0.001 and 0.000	o 18 nts 2