Supporting information

Solid state synthesis of coordination compounds from basic metal salts.

Christopher J. Adams, Mukhtar A. Kurawa, Matteo Lusi, A. Guy Orpen* School of Chemistry, University of Bristol, Bristol BS8 1TS

Powder diffraction patterns for 1 - 8

Room temperature XRPD for $[CoCl_4][(H_2im)]_2 \mathbf{1}$. blue = calculated from $\mathbf{1}(rt)$; green = mechanochemical; pink = vapour absorption; turquoise = calculated from $KAMSOH^3$.

Room temperature XRPD for $[ZnCl_4][(H_2im]_2 2. blue = calculated from 2(rt); green = mechanochemical; pink = vapour absorption; turquoise = calculated from 2(LT).$

XRPD for $[CuCl_4][(H_2im]_2 \ \mathbf{3}.$ blue = calculated from $\mathbf{3}(rt)$; green = mechanochemical; pink = vapour absorption; turquoise = calculated from $\mathbf{3}(LT)$.

XRPD for $[Co(Him)_2Cl_2]$ **4**. blue = calculated from DIMZCO; green = mechanochemical; pink = **1** + 2KOH; turquoise = $H_2imCl + Co(OH)_2$; brown = $H_2imCl + CoCO_3$.

XRPD for $[Zn(Him)_2Cl_2]$ **5**. blue = calculated from ZNCIMA; green = mechanochemical; pink = **2** + 2KOH; brown = $H_2imCl + 3Zn(OH)_2 \cdot 2ZnCO_3$.

XRPD for $[{Cu(Him)_2Cl_2}_n]$ 6. blue = calculated from DIMZCU; green = mechanochemical; brown = $H_2imCl + Cu(OH)_2 \cdot CuCO_3$; pink = 3 + 2KOH.

XRPD for $[{CoCl_2(4,4'-bipy)}_n]$ **7**. *blue* = *calculated for* **7**; *turquoise* = $[4,4'-H_2bipy]Cl_2 + Co(OH)_2$; *brown* = $[4,4'-H_2bipy]Cl_2 + CoCO_3$.

XRPD for $[{ZnCl_2(4,4'-bipy)}_n]$ 8. blue = calculated for 8 (Pban (LT)); pink = calculated for 8 (Pnma (RT)); brown = observed for 8 from $[4,4'-H_2bipy]Cl_2 + 3Zn(OH)_2 \cdot 2ZnCO_3$.