# Electronic Supplementary Material for CrystEngComm # This journal is (c) The Royal Society of Chemistry 2008 data_global _journal_coden_Cambridge 1350 loop_ _publ_author_name 'Keiichiro Ogawa' 'Jun Harada' 'Mayuko Harakawa' _publ_contact_author_name 'Keiichiro Ogawa' _publ_contact_author_email OGAWA@RAMIE.C.U-TOKYO.AC.JP _publ_section_title ; Conformational change of all-trans-1,6-diphenyl-1,3,5-hexatriene in two crystalline forms ; # Attachment 'ogawa.cif' data_monort _database_code_depnum_ccdc_archive 'CCDC 693552' _audit_creation_method SHELXL-97 _chemical_name_systematic ; E,E,E-1,6-diphenyl-1,3,5-hexatriene ; _chemical_name_common ? _chemical_melting_point 196.2_C _chemical_formula_moiety ? _chemical_formula_sum 'C18 H16' _chemical_formula_weight 232.31 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting monoclinic _symmetry_space_group_name_H-M P_1_21/c_1 loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, y+1/2, -z+1/2' '-x, -y, -z' 'x, -y-1/2, z-1/2' _cell_length_a 14.566(3) _cell_length_b 7.4368(14) _cell_length_c 6.2542(12) _cell_angle_alpha 90.00 _cell_angle_beta 96.822(4) _cell_angle_gamma 90.00 _cell_volume 672.7(2) _cell_formula_units_Z 2 _cell_measurement_temperature 300 _cell_measurement_reflns_used 2159 _cell_measurement_theta_min 2.7 _cell_measurement_theta_max 25.7 _exptl_crystal_description plate _exptl_crystal_colour pale_yellow _exptl_crystal_size_max 0.34 _exptl_crystal_size_mid 0.26 _exptl_crystal_size_min 0.08 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.147 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 248 _exptl_absorpt_coefficient_mu 0.065 _exptl_absorpt_correction_type multi_scan _exptl_absorpt_correction_T_min 0.9784 _exptl_absorpt_correction_T_max 0.9949 _exptl_absorpt_process_details 'SADABS (Sheldrick, 2002)' _exptl_special_details ; The data collection covered over a full sphere of reciprocal space by a combination of four sets of exposures; each set had a different \f angle (0, 90, 180 and 270\%) for the crystal and each exposure of 20s covered 0.3\% in \w. The crystal-to-detector distance was 4 cm and the detector swing angle was -32\%. Crystal decay was monitored by repeating the measurement of the initial 50 frames at the end of data collection and analyzing the duplicate reflections. ; _diffrn_ambient_temperature 300 _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker SMART 1000 CCD diffractometer' _diffrn_measurement_method \w_scan _diffrn_detector_area_resol_mean 8.192 _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% 0 _diffrn_reflns_number 8242 _diffrn_reflns_av_R_equivalents 0.0420 _diffrn_reflns_av_sigmaI/netI 0.0628 _diffrn_reflns_limit_h_min -18 _diffrn_reflns_limit_h_max 18 _diffrn_reflns_limit_k_min -9 _diffrn_reflns_limit_k_max 9 _diffrn_reflns_limit_l_min -8 _diffrn_reflns_limit_l_max 8 _diffrn_reflns_theta_min 2.82 _diffrn_reflns_theta_max 27.50 _reflns_number_total 1539 _reflns_number_gt 976 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'SMART (Bruker, 1998)' _computing_cell_refinement 'SAINT (Bruker, 1998)' _computing_data_reduction SAINT _computing_structure_solution 'SHELXS-97 (Sheldrick, 2008)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 2008)' _computing_molecular_graphics 'SHELXTL (Sheldrick, 2008)' _computing_publication_material SHELXTL _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0353P)^2^+0.1595P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary ? _atom_sites_solution_hydrogens difmap _refine_ls_hydrogen_treatment refall _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 1539 _refine_ls_number_parameters 114 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0882 _refine_ls_R_factor_gt 0.0516 _refine_ls_wR_factor_ref 0.1481 _refine_ls_wR_factor_gt 0.1240 _refine_ls_goodness_of_fit_ref 1.028 _refine_ls_restrained_S_all 1.028 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group C1 C 0.77311(12) 0.4963(2) 0.4749(3) 0.0506(4) Uani 1 1 d . . . C2 C 0.75200(15) 0.4192(2) 0.2715(3) 0.0627(5) Uani 1 1 d . . . C3 C 0.66368(17) 0.4231(3) 0.1667(3) 0.0719(6) Uani 1 1 d . . . C4 C 0.59494(16) 0.5065(3) 0.2594(3) 0.0700(6) Uani 1 1 d . . . C5 C 0.61482(14) 0.5883(3) 0.4570(3) 0.0649(5) Uani 1 1 d . . . C6 C 0.70237(13) 0.5841(2) 0.5618(3) 0.0567(5) Uani 1 1 d . . . C7 C 0.86593(13) 0.4735(2) 0.5876(3) 0.0568(5) Uani 1 1 d . . . C8 C 0.89581(13) 0.5210(2) 0.7891(3) 0.0556(5) Uani 1 1 d . . . C9 C 0.98529(13) 0.4796(2) 0.8978(3) 0.0597(5) Uani 1 1 d . . . H2 H 0.8033(14) 0.364(3) 0.208(3) 0.078(6) Uiso 1 1 d . . . H3 H 0.6504(14) 0.371(3) 0.025(4) 0.088(7) Uiso 1 1 d . . . H4 H 0.5305(17) 0.508(3) 0.191(3) 0.083(6) Uiso 1 1 d . . . H5 H 0.5649(14) 0.646(3) 0.527(3) 0.080(6) Uiso 1 1 d . . . H6 H 0.7153(12) 0.637(3) 0.706(3) 0.068(5) Uiso 1 1 d . . . H7 H 0.9127(13) 0.409(3) 0.510(3) 0.073(6) Uiso 1 1 d . . . H8 H 0.8517(13) 0.580(3) 0.864(3) 0.063(5) Uiso 1 1 d . . . H9 H 1.0280(14) 0.410(3) 0.820(3) 0.080(6) Uiso 1 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 C1 0.0634(11) 0.0379(8) 0.0504(9) 0.0031(7) 0.0059(7) -0.0058(7) C2 0.0843(14) 0.0499(10) 0.0545(11) -0.0036(8) 0.0112(10) 0.0044(9) C3 0.1021(18) 0.0616(12) 0.0488(11) -0.0049(9) -0.0044(11) -0.0061(11) C4 0.0727(13) 0.0690(13) 0.0642(12) 0.0071(10) -0.0095(10) -0.0077(10) C5 0.0653(13) 0.0645(12) 0.0648(12) -0.0010(9) 0.0076(10) 0.0004(9) C6 0.0674(12) 0.0516(10) 0.0509(10) -0.0053(8) 0.0068(8) -0.0058(8) C7 0.0626(11) 0.0480(10) 0.0606(11) 0.0005(8) 0.0109(9) -0.0025(8) C8 0.0577(11) 0.0491(10) 0.0603(11) 0.0018(8) 0.0080(8) -0.0068(8) C9 0.0584(11) 0.0539(10) 0.0669(11) 0.0023(10) 0.0073(9) -0.0048(8) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag C1 C6 1.385(2) . ? C1 C2 1.396(2) . ? C1 C7 1.458(2) . ? C2 C3 1.373(3) . ? C2 H2 0.98(2) . ? C3 C4 1.364(3) . ? C3 H3 0.97(2) . ? C4 C5 1.377(3) . ? C4 H4 0.98(2) . ? C5 C6 1.363(3) . ? C5 H5 0.99(2) . ? C6 H6 0.984(19) . ? C7 C8 1.331(2) . ? C7 H7 1.01(2) . ? C8 C9 1.430(3) . ? C8 H8 0.948(19) . ? C9 C9 1.334(4) 3_767 ? C9 H9 0.98(2) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C6 C1 C2 117.25(17) . . ? C6 C1 C7 123.75(16) . . ? C2 C1 C7 118.94(17) . . ? C3 C2 C1 121.2(2) . . ? C3 C2 H2 122.2(11) . . ? C1 C2 H2 116.6(11) . . ? C4 C3 C2 120.0(2) . . ? C4 C3 H3 119.7(12) . . ? C2 C3 H3 120.2(12) . . ? C3 C4 C5 119.7(2) . . ? C3 C4 H4 122.0(12) . . ? C5 C4 H4 118.3(13) . . ? C6 C5 C4 120.4(2) . . ? C6 C5 H5 119.4(12) . . ? C4 C5 H5 120.1(12) . . ? C5 C6 C1 121.29(17) . . ? C5 C6 H6 119.9(10) . . ? C1 C6 H6 118.7(10) . . ? C8 C7 C1 127.35(18) . . ? C8 C7 H7 114.9(10) . . ? C1 C7 H7 117.6(10) . . ? C7 C8 C9 124.73(19) . . ? C7 C8 H8 115.3(11) . . ? C9 C8 H8 119.9(11) . . ? C9 C9 C8 125.3(2) 3_767 . ? C9 C9 H9 116.5(12) 3_767 . ? C8 C9 H9 118.2(12) . . ? loop_ _geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag C6 C1 C2 C3 -3.0(3) . . . . ? C7 C1 C2 C3 174.25(17) . . . . ? C1 C2 C3 C4 1.3(3) . . . . ? C2 C3 C4 C5 0.8(3) . . . . ? C3 C4 C5 C6 -1.0(3) . . . . ? C4 C5 C6 C1 -0.9(3) . . . . ? C2 C1 C6 C5 2.8(3) . . . . ? C7 C1 C6 C5 -174.34(17) . . . . ? C6 C1 C7 C8 4.4(3) . . . . ? C2 C1 C7 C8 -172.70(17) . . . . ? C1 C7 C8 C9 173.61(16) . . . . ? C7 C8 C9 C9 -177.3(2) . . . 3_767 ? _diffrn_measured_fraction_theta_max 0.999 _diffrn_reflns_theta_full 27.50 _diffrn_measured_fraction_theta_full 0.999 _refine_diff_density_max 0.143 _refine_diff_density_min -0.115 _refine_diff_density_rms 0.033 #===END data_mono90k _database_code_depnum_ccdc_archive 'CCDC 693553' _audit_creation_method SHELXL-97 _chemical_name_systematic ; E,E,E-1,6-diphenyl-1,3,5-hexatriene ; _chemical_name_common ? _chemical_melting_point 196.2_C _chemical_formula_moiety ? _chemical_formula_sum 'C18 H16' _chemical_formula_weight 232.31 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting monoclinic _symmetry_space_group_name_H-M P_1_21/c_1 loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, y+1/2, -z+1/2' '-x, -y, -z' 'x, -y-1/2, z-1/2' _cell_length_a 14.4012(13) _cell_length_b 7.2212(6) _cell_length_c 6.2416(6) _cell_angle_alpha 90.00 _cell_angle_beta 96.338(2) _cell_angle_gamma 90.00 _cell_volume 645.12(10) _cell_formula_units_Z 2 _cell_measurement_temperature 90 _cell_measurement_reflns_used 3692 _cell_measurement_theta_min 2.8 _cell_measurement_theta_max 30.0 _exptl_crystal_description plate _exptl_crystal_colour pale_yellow _exptl_crystal_size_max 0.34 _exptl_crystal_size_mid 0.26 _exptl_crystal_size_min 0.08 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.196 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 248 _exptl_absorpt_coefficient_mu 0.067 _exptl_absorpt_correction_type multi_scan _exptl_absorpt_correction_T_min 0.9775 _exptl_absorpt_correction_T_max 0.9946 _exptl_absorpt_process_details 'SADABS (Sheldrick, 2002)' _exptl_special_details ; The data collection covered over a full sphere of reciprocal space by a combination of four sets of exposures; each set had a different \f angle (0, 90, 180 and 270\%) for the crystal and each exposure of 10s covered 0.3\% in \w. The crystal-to-detector distance was 4 cm and the detector swing angle was -32\%. Crystal decay was monitored by repeating the measurement of the initial 50 frames at the end of data collection and analyzing the duplicate reflections. ; _diffrn_ambient_temperature 90 _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker SMART 1000 CCD diffractometer' _diffrn_measurement_method \w_scan _diffrn_detector_area_resol_mean 8.192 _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% 0 _diffrn_reflns_number 7571 _diffrn_reflns_av_R_equivalents 0.0182 _diffrn_reflns_av_sigmaI/netI 0.0134 _diffrn_reflns_limit_h_min -18 _diffrn_reflns_limit_h_max 18 _diffrn_reflns_limit_k_min -9 _diffrn_reflns_limit_k_max 9 _diffrn_reflns_limit_l_min -8 _diffrn_reflns_limit_l_max 8 _diffrn_reflns_theta_min 1.42 _diffrn_reflns_theta_max 27.50 _reflns_number_total 1491 _reflns_number_gt 1266 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'SMART (Bruker, 1998)' _computing_cell_refinement 'SAINT (Bruker, 1998)' _computing_data_reduction SAINT _computing_structure_solution 'SHELXS-97 (Sheldrick, 2008)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 2008)' _computing_molecular_graphics 'SHELXTL (Sheldrick, 2008)' _computing_publication_material SHELXTL _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0577P)^2^+0.2750P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary ? _atom_sites_solution_hydrogens difmap _refine_ls_hydrogen_treatment refall _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 1491 _refine_ls_number_parameters 114 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0504 _refine_ls_R_factor_gt 0.0428 _refine_ls_wR_factor_ref 0.1149 _refine_ls_wR_factor_gt 0.1090 _refine_ls_goodness_of_fit_ref 1.044 _refine_ls_restrained_S_all 1.044 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group C1 C 0.77317(8) 0.49908(15) 0.46948(18) 0.0168(3) Uani 1 1 d . . . C2 C 0.75314(9) 0.41912(16) 0.26485(19) 0.0199(3) Uani 1 1 d . . . C3 C 0.66318(9) 0.42065(17) 0.15888(19) 0.0213(3) Uani 1 1 d . . . C4 C 0.59145(8) 0.50405(17) 0.25454(19) 0.0204(3) Uani 1 1 d . . . C5 C 0.61098(8) 0.58991(16) 0.45408(19) 0.0199(3) Uani 1 1 d . . . C6 C 0.70039(8) 0.58785(16) 0.56049(18) 0.0181(3) Uani 1 1 d . . . C7 C 0.86698(8) 0.47637(16) 0.58331(19) 0.0188(3) Uani 1 1 d . . . C8 C 0.89528(8) 0.52546(16) 0.78792(19) 0.0187(3) Uani 1 1 d . . . C9 C 0.98590(8) 0.47948(16) 0.89619(19) 0.0193(3) Uani 1 1 d . . . H2 H 0.8036(10) 0.360(2) 0.200(2) 0.027(4) Uiso 1 1 d . . . H3 H 0.6503(10) 0.360(2) 0.016(2) 0.026(4) Uiso 1 1 d . . . H4 H 0.5274(10) 0.503(2) 0.182(2) 0.018(3) Uiso 1 1 d . . . H5 H 0.5613(11) 0.649(2) 0.521(2) 0.027(4) Uiso 1 1 d . . . H6 H 0.7116(9) 0.647(2) 0.703(2) 0.022(4) Uiso 1 1 d . . . H7 H 0.9112(10) 0.412(2) 0.504(2) 0.026(4) Uiso 1 1 d . . . H8 H 0.8513(10) 0.588(2) 0.872(2) 0.025(4) Uiso 1 1 d . . . H9 H 1.0291(11) 0.409(2) 0.810(2) 0.029(4) Uiso 1 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 C1 0.0200(6) 0.0134(5) 0.0170(5) 0.0020(4) 0.0017(4) -0.0021(4) C2 0.0253(6) 0.0160(5) 0.0188(6) -0.0005(4) 0.0042(4) 0.0014(4) C3 0.0296(6) 0.0183(6) 0.0153(5) -0.0009(4) -0.0006(4) -0.0027(5) C4 0.0209(6) 0.0207(6) 0.0187(5) 0.0027(4) -0.0026(4) -0.0030(4) C5 0.0202(6) 0.0189(6) 0.0208(6) 0.0013(4) 0.0032(5) -0.0009(4) C6 0.0218(6) 0.0162(5) 0.0164(5) -0.0006(4) 0.0022(4) -0.0020(4) C7 0.0193(6) 0.0160(5) 0.0213(6) 0.0011(4) 0.0032(5) -0.0003(4) C8 0.0186(6) 0.0164(5) 0.0210(6) 0.0011(4) 0.0021(4) -0.0012(4) C9 0.0189(6) 0.0166(5) 0.0222(6) 0.0013(4) 0.0015(4) -0.0014(4) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag C1 C6 1.4013(16) . ? C1 C2 1.4023(16) . ? C1 C7 1.4645(16) . ? C2 C3 1.3881(17) . ? C2 H2 0.968(15) . ? C3 C4 1.3865(18) . ? C3 H3 0.992(15) . ? C4 C5 1.3919(16) . ? C4 H4 0.981(15) . ? C5 C6 1.3822(16) . ? C5 H5 0.966(16) . ? C6 H6 0.981(15) . ? C7 C8 1.3445(16) . ? C7 H7 0.967(16) . ? C8 C9 1.4406(16) . ? C8 H8 0.979(16) . ? C9 C9 1.348(2) 3_767 ? C9 H9 1.003(16) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C6 C1 C2 118.01(11) . . ? C6 C1 C7 123.07(10) . . ? C2 C1 C7 118.80(11) . . ? C3 C2 C1 121.20(11) . . ? C3 C2 H2 120.6(9) . . ? C1 C2 H2 118.2(9) . . ? C4 C3 C2 119.92(11) . . ? C4 C3 H3 120.3(8) . . ? C2 C3 H3 119.8(8) . . ? C3 C4 C5 119.49(11) . . ? C3 C4 H4 120.5(8) . . ? C5 C4 H4 120.1(8) . . ? C6 C5 C4 120.71(11) . . ? C6 C5 H5 119.5(9) . . ? C4 C5 H5 119.8(9) . . ? C5 C6 C1 120.59(11) . . ? C5 C6 H6 118.8(8) . . ? C1 C6 H6 120.6(8) . . ? C8 C7 C1 126.73(11) . . ? C8 C7 H7 117.7(9) . . ? C1 C7 H7 115.4(9) . . ? C7 C8 C9 123.28(11) . . ? C7 C8 H8 119.1(8) . . ? C9 C8 H8 117.5(8) . . ? C9 C9 C8 124.17(14) 3_767 . ? C9 C9 H9 119.2(9) 3_767 . ? C8 C9 H9 116.7(9) . . ? loop_ _geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag C6 C1 C2 C3 -2.67(17) . . . . ? C7 C1 C2 C3 173.62(11) . . . . ? C1 C2 C3 C4 0.69(18) . . . . ? C2 C3 C4 C5 1.67(18) . . . . ? C3 C4 C5 C6 -2.00(18) . . . . ? C4 C5 C6 C1 -0.04(18) . . . . ? C2 C1 C6 C5 2.34(16) . . . . ? C7 C1 C6 C5 -173.79(11) . . . . ? C6 C1 C7 C8 3.90(19) . . . . ? C2 C1 C7 C8 -172.20(11) . . . . ? C1 C7 C8 C9 172.68(11) . . . . ? C7 C8 C9 C9 -177.06(14) . . . 3_767 ? _diffrn_measured_fraction_theta_max 1.000 _diffrn_reflns_theta_full 27.50 _diffrn_measured_fraction_theta_full 1.000 _refine_diff_density_max 0.398 _refine_diff_density_min -0.169 _refine_diff_density_rms 0.047 #===END data_orthort _database_code_depnum_ccdc_archive 'CCDC 693554' _audit_creation_method SHELXL-97 _chemical_name_systematic ; E,E,E-1,6-diphenyl-1,3,5-hexatriene ; _chemical_name_common ? _chemical_melting_point 200.5_C _chemical_formula_moiety ? _chemical_formula_sum 'C18 H16' _chemical_formula_weight 232.31 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting orthorhombic _symmetry_space_group_name_H-M P_b_c_a loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, -y, z+1/2' '-x, y+1/2, -z+1/2' 'x+1/2, -y+1/2, -z' '-x, -y, -z' 'x-1/2, y, -z-1/2' 'x, -y-1/2, z-1/2' '-x-1/2, y-1/2, z' _cell_length_a 7.7403(5) _cell_length_b 9.8733(7) _cell_length_c 18.1285(13) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 1385.42(17) _cell_formula_units_Z 4 _cell_measurement_temperature 300 _cell_measurement_reflns_used 4024 _cell_measurement_theta_min 2.2 _cell_measurement_theta_max 24.3 _exptl_crystal_description block _exptl_crystal_colour pale_yellow _exptl_crystal_size_max 0.30 _exptl_crystal_size_mid 0.28 _exptl_crystal_size_min 0.16 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.114 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 496 _exptl_absorpt_coefficient_mu 0.063 _exptl_absorpt_correction_type multi_scan _exptl_absorpt_correction_T_min 0.9815 _exptl_absorpt_correction_T_max 0.9900 _exptl_absorpt_process_details 'SADABS (Sheldrick, 2002)' _exptl_special_details ; The data collection covered over a full sphere of reciprocal space by a combination of four sets of exposures; each set had a different \f angle (0, 90, 180 and 270\%) for the crystal and each exposure of 10s covered 0.3\% in \w. The crystal-to-detector distance was 4 cm and the detector swing angle was -32\%. Crystal decay was monitored by repeating the measurement of the initial 50 frames at the end of data collection and analyzing the duplicate reflections. ; _diffrn_ambient_temperature 300 _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker SMART 1000 CCD diffractometer' _diffrn_measurement_method \w_scan _diffrn_detector_area_resol_mean 8.192 _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% 0 _diffrn_reflns_number 19981 _diffrn_reflns_av_R_equivalents 0.0326 _diffrn_reflns_av_sigmaI/netI 0.0219 _diffrn_reflns_limit_h_min -10 _diffrn_reflns_limit_h_max 10 _diffrn_reflns_limit_k_min -13 _diffrn_reflns_limit_k_max 13 _diffrn_reflns_limit_l_min -25 _diffrn_reflns_limit_l_max 25 _diffrn_reflns_theta_min 2.25 _diffrn_reflns_theta_max 30.03 _reflns_number_total 2021 _reflns_number_gt 1192 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'SMART (Bruker, 1998)' _computing_cell_refinement 'SAINT (Bruker, 1998)' _computing_data_reduction SAINT _computing_structure_solution 'SHELXS-97 (Sheldrick, 2008)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 2008)' _computing_molecular_graphics 'SHELXTL (Sheldrick, 2008)' _computing_publication_material SHELXTL _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0341P)^2^+0.1813P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary ? _atom_sites_solution_hydrogens difmap _refine_ls_hydrogen_treatment refall _refine_ls_extinction_method SHELXL _refine_ls_extinction_coef 0.016(2) _refine_ls_extinction_expression Fc^*^=kFc[1+0.001xFc^2^\l^3^/sin(2\q)]^-1/4^ _refine_ls_number_reflns 2021 _refine_ls_number_parameters 115 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0771 _refine_ls_R_factor_gt 0.0417 _refine_ls_wR_factor_ref 0.1139 _refine_ls_wR_factor_gt 0.0923 _refine_ls_goodness_of_fit_ref 1.009 _refine_ls_restrained_S_all 1.009 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group C1 C 0.99504(13) 0.39263(12) 0.61289(6) 0.0622(3) Uani 1 1 d . . . C2 C 1.06365(17) 0.52223(14) 0.60653(8) 0.0760(4) Uani 1 1 d . . . C3 C 1.02553(19) 0.62199(15) 0.65774(9) 0.0858(4) Uani 1 1 d . . . C4 C 0.91940(19) 0.59370(16) 0.71627(8) 0.0834(4) Uani 1 1 d . . . C5 C 0.85026(19) 0.46725(16) 0.72302(9) 0.0850(4) Uani 1 1 d . . . C6 C 0.88648(17) 0.36871(14) 0.67254(7) 0.0747(4) Uani 1 1 d . . . C7 C 1.03833(15) 0.28868(14) 0.55869(6) 0.0699(3) Uani 1 1 d . . . C8 C 0.98080(15) 0.16210(14) 0.55612(7) 0.0695(3) Uani 1 1 d . . . C9 C 1.02710(16) 0.06383(14) 0.50118(7) 0.0742(4) Uani 1 1 d . . . H2 H 1.1359(17) 0.5404(12) 0.5665(7) 0.084(4) Uiso 1 1 d . . . H3 H 1.0738(19) 0.7090(16) 0.6496(8) 0.103(5) Uiso 1 1 d . . . H4 H 0.896(2) 0.6656(16) 0.7528(9) 0.111(5) Uiso 1 1 d . . . H5 H 0.774(2) 0.4474(15) 0.7660(8) 0.115(5) Uiso 1 1 d . . . H6 H 0.8363(17) 0.2764(14) 0.6764(7) 0.092(4) Uiso 1 1 d . . . H7 H 1.1180(17) 0.3173(13) 0.5190(7) 0.085(4) Uiso 1 1 d . . . H8 H 0.9026(17) 0.1317(11) 0.5937(7) 0.076(4) Uiso 1 1 d . . . H9 H 1.1068(18) 0.0943(13) 0.4628(7) 0.088(4) Uiso 1 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 C1 0.0512(6) 0.0736(7) 0.0616(6) 0.0105(6) -0.0059(5) 0.0055(5) C2 0.0671(8) 0.0881(9) 0.0729(8) 0.0198(7) -0.0024(6) -0.0037(6) C3 0.0827(9) 0.0694(9) 0.1053(11) 0.0112(8) -0.0217(8) -0.0010(7) C4 0.0743(8) 0.0831(9) 0.0929(10) -0.0045(8) -0.0095(7) 0.0208(7) C5 0.0747(8) 0.0901(10) 0.0902(10) -0.0008(8) 0.0153(7) 0.0116(7) C6 0.0662(7) 0.0756(8) 0.0824(8) 0.0052(7) 0.0122(6) 0.0019(6) C7 0.0588(6) 0.0895(9) 0.0613(7) 0.0091(6) 0.0015(5) 0.0039(6) C8 0.0578(6) 0.0872(9) 0.0634(7) 0.0019(6) -0.0006(5) 0.0055(6) C9 0.0622(7) 0.0931(9) 0.0673(7) -0.0034(7) -0.0017(6) 0.0069(7) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag C1 C6 1.3897(16) . ? C1 C2 1.3901(17) . ? C1 C7 1.4599(17) . ? C2 C3 1.385(2) . ? C2 H2 0.934(13) . ? C3 C4 1.371(2) . ? C3 H3 0.949(16) . ? C4 C5 1.364(2) . ? C4 H4 0.987(17) . ? C5 C6 1.3648(19) . ? C5 H5 0.996(17) . ? C6 H6 0.993(14) . ? C7 C8 1.3275(18) . ? C7 H7 0.989(13) . ? C8 C9 1.4359(18) . ? C8 H8 0.959(13) . ? C9 C9 1.329(3) 5_756 ? C9 H9 0.978(13) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C6 C1 C2 116.87(12) . . ? C6 C1 C7 122.89(11) . . ? C2 C1 C7 120.24(11) . . ? C3 C2 C1 121.17(13) . . ? C3 C2 H2 120.8(8) . . ? C1 C2 H2 118.1(8) . . ? C4 C3 C2 120.10(14) . . ? C4 C3 H3 122.8(9) . . ? C2 C3 H3 117.1(9) . . ? C5 C4 C3 119.41(15) . . ? C5 C4 H4 121.8(9) . . ? C3 C4 H4 118.8(9) . . ? C4 C5 C6 120.79(15) . . ? C4 C5 H5 118.8(9) . . ? C6 C5 H5 120.4(9) . . ? C5 C6 C1 121.65(13) . . ? C5 C6 H6 121.7(8) . . ? C1 C6 H6 116.6(8) . . ? C8 C7 C1 127.48(12) . . ? C8 C7 H7 116.9(7) . . ? C1 C7 H7 115.6(7) . . ? C7 C8 C9 125.22(13) . . ? C7 C8 H8 118.8(7) . . ? C9 C8 H8 116.0(7) . . ? C9 C9 C8 125.75(17) 5_756 . ? C9 C9 H9 117.9(8) 5_756 . ? C8 C9 H9 116.3(8) . . ? loop_ _geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag C6 C1 C2 C3 0.31(18) . . . . ? C7 C1 C2 C3 -179.39(11) . . . . ? C1 C2 C3 C4 0.4(2) . . . . ? C2 C3 C4 C5 -0.8(2) . . . . ? C3 C4 C5 C6 0.5(2) . . . . ? C4 C5 C6 C1 0.3(2) . . . . ? C2 C1 C6 C5 -0.69(18) . . . . ? C7 C1 C6 C5 179.00(12) . . . . ? C6 C1 C7 C8 2.00(18) . . . . ? C2 C1 C7 C8 -178.32(12) . . . . ? C1 C7 C8 C9 179.70(11) . . . . ? C7 C8 C9 C9 178.66(15) . . . 5_756 ? _diffrn_measured_fraction_theta_max 1.000 _diffrn_reflns_theta_full 30.03 _diffrn_measured_fraction_theta_full 1.000 _refine_diff_density_max 0.113 _refine_diff_density_min -0.116 _refine_diff_density_rms 0.032 #===END data_ortho90 _database_code_depnum_ccdc_archive 'CCDC 693555' _audit_creation_method SHELXL-97 _chemical_name_systematic ; E,E,E-1,6-diphenylhexatriene ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety ? _chemical_formula_sum 'C18 H16' _chemical_formula_weight 232.31 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting orthorhombic _symmetry_space_group_name_H-M P_b_c_a loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, -y, z+1/2' '-x, y+1/2, -z+1/2' 'x+1/2, -y+1/2, -z' '-x, -y, -z' 'x-1/2, y, -z-1/2' 'x, -y-1/2, z-1/2' '-x-1/2, y-1/2, z' _cell_length_a 7.4842(3) _cell_length_b 10.0656(4) _cell_length_c 17.6698(7) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 1331.12(9) _cell_formula_units_Z 4 _cell_measurement_temperature 90 _cell_measurement_reflns_used 7802 _cell_measurement_theta_min 2.7 _cell_measurement_theta_max 30.0 _exptl_crystal_description block _exptl_crystal_colour pale_yellow _exptl_crystal_size_max 0.30 _exptl_crystal_size_mid 0.28 _exptl_crystal_size_min 0.16 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.159 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 496 _exptl_absorpt_coefficient_mu 0.065 _exptl_absorpt_correction_type multi_scan _exptl_absorpt_correction_T_min 0.9807 _exptl_absorpt_correction_T_max 0.9896 _exptl_absorpt_process_details 'SADABS (Sheldrick, 2002)' _exptl_special_details ; The data collection covered over a full sphere of reciprocal space by a combination of four sets of exposures; each set had a different \f angle (0, 90, 180 and 270\%) for the crystal and each exposure of 5s covered 0.3\% in \w. The crystal-to-detector distance was 4 cm and the detector swing angle was -32\%. Crystal decay was monitored by repeating the measurement of the initial 50 frames at the end of data collection and analyzing the duplicate reflections. ; _diffrn_ambient_temperature 90 _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker SMART 1000 CCD diffractometer' _diffrn_measurement_method \w_scan _diffrn_detector_area_resol_mean 8.192 _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% 0 _diffrn_reflns_number 19219 _diffrn_reflns_av_R_equivalents 0.0225 _diffrn_reflns_av_sigmaI/netI 0.0107 _diffrn_reflns_limit_h_min -10 _diffrn_reflns_limit_h_max 10 _diffrn_reflns_limit_k_min -14 _diffrn_reflns_limit_k_max 14 _diffrn_reflns_limit_l_min -24 _diffrn_reflns_limit_l_max 24 _diffrn_reflns_theta_min 2.31 _diffrn_reflns_theta_max 30.03 _reflns_number_total 1949 _reflns_number_gt 1730 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'SMART (Bruker, 1998)' _computing_cell_refinement 'SAINT (Bruker, 1998)' _computing_data_reduction SAINT _computing_structure_solution 'SHELXS-97 (Sheldrick, 2008)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 2008)' _computing_molecular_graphics 'SHELXTL (Sheldrick, 2008)' _computing_publication_material SHELXTL _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0715P)^2^+0.3144P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary ? _atom_sites_solution_hydrogens difmap _refine_ls_hydrogen_treatment refall _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 1949 _refine_ls_number_parameters 114 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0484 _refine_ls_R_factor_gt 0.0432 _refine_ls_wR_factor_ref 0.1187 _refine_ls_wR_factor_gt 0.1141 _refine_ls_goodness_of_fit_ref 1.047 _refine_ls_restrained_S_all 1.047 _refine_ls_shift/su_max 0.001 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group C1 C 0.99257(10) 0.38811(8) 0.61389(4) 0.01612(18) Uani 1 1 d . . . C2 C 1.05718(11) 0.51790(9) 0.60431(5) 0.01891(19) Uani 1 1 d . . . C3 C 1.01818(12) 0.61709(8) 0.65677(5) 0.0208(2) Uani 1 1 d . . . C4 C 0.91526(12) 0.58798(9) 0.72008(5) 0.0208(2) Uani 1 1 d . . . C5 C 0.84880(11) 0.45989(9) 0.73009(5) 0.0210(2) Uani 1 1 d . . . C6 C 0.88639(11) 0.36138(8) 0.67765(5) 0.01888(19) Uani 1 1 d . . . C7 C 1.03802(11) 0.28584(8) 0.55805(4) 0.01820(19) Uani 1 1 d . . . C8 C 0.97871(11) 0.15911(9) 0.55748(5) 0.01891(19) Uani 1 1 d . . . C9 C 1.02825(11) 0.06383(9) 0.50011(5) 0.0200(2) Uani 1 1 d . . . H2 H 1.1314(16) 0.5381(11) 0.5597(7) 0.025(3) Uiso 1 1 d . . . H3 H 1.0669(17) 0.7080(13) 0.6480(7) 0.029(3) Uiso 1 1 d . . . H4 H 0.8923(18) 0.6587(13) 0.7573(8) 0.033(3) Uiso 1 1 d . . . H5 H 0.7755(18) 0.4396(13) 0.7743(6) 0.028(3) Uiso 1 1 d . . . H6 H 0.8345(15) 0.2708(11) 0.6860(6) 0.023(3) Uiso 1 1 d . . . H7 H 1.1193(17) 0.3128(13) 0.5165(7) 0.030(3) Uiso 1 1 d . . . H8 H 0.8953(17) 0.1266(12) 0.5979(7) 0.026(3) Uiso 1 1 d . . . H9 H 1.1082(18) 0.0937(13) 0.4585(7) 0.033(3) Uiso 1 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 C1 0.0142(3) 0.0183(4) 0.0159(4) 0.0014(3) -0.0011(3) 0.0015(3) C2 0.0181(4) 0.0203(4) 0.0184(4) 0.0040(3) -0.0007(3) -0.0007(3) C3 0.0210(4) 0.0166(4) 0.0248(4) 0.0021(3) -0.0042(3) 0.0000(3) C4 0.0195(4) 0.0203(4) 0.0225(4) -0.0025(3) -0.0027(3) 0.0048(3) C5 0.0191(4) 0.0223(4) 0.0214(4) -0.0001(3) 0.0034(3) 0.0029(3) C6 0.0178(4) 0.0187(4) 0.0202(4) 0.0012(3) 0.0027(3) 0.0001(3) C7 0.0170(4) 0.0215(4) 0.0161(4) 0.0005(3) 0.0001(3) 0.0020(3) C8 0.0168(4) 0.0220(4) 0.0179(4) -0.0022(3) -0.0003(3) 0.0019(3) C9 0.0172(4) 0.0234(4) 0.0193(4) -0.0029(3) -0.0008(3) 0.0024(3) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag C1 C2 1.4032(11) . ? C1 C6 1.4047(11) . ? C1 C7 1.4659(11) . ? C2 C3 1.3932(12) . ? C2 H2 0.985(12) . ? C3 C4 1.3896(13) . ? C3 H3 0.997(13) . ? C4 C5 1.3932(12) . ? C4 H4 0.984(14) . ? C5 C6 1.3859(12) . ? C5 H5 0.976(12) . ? C6 H6 1.002(11) . ? C7 C8 1.3506(12) . ? C7 H7 0.992(13) . ? C8 C9 1.4439(12) . ? C8 H8 1.004(13) . ? C9 C9 1.3527(18) 5_756 ? C9 H9 0.994(13) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C2 C1 C6 118.03(7) . . ? C2 C1 C7 119.52(7) . . ? C6 C1 C7 122.45(7) . . ? C3 C2 C1 120.98(8) . . ? C3 C2 H2 120.1(7) . . ? C1 C2 H2 118.9(7) . . ? C4 C3 C2 120.04(8) . . ? C4 C3 H3 121.4(7) . . ? C2 C3 H3 118.5(7) . . ? C3 C4 C5 119.68(8) . . ? C3 C4 H4 118.9(8) . . ? C5 C4 H4 121.5(8) . . ? C6 C5 C4 120.32(8) . . ? C6 C5 H5 120.0(7) . . ? C4 C5 H5 119.7(7) . . ? C5 C6 C1 120.93(8) . . ? C5 C6 H6 118.3(7) . . ? C1 C6 H6 120.8(7) . . ? C8 C7 C1 126.30(8) . . ? C8 C7 H7 117.0(8) . . ? C1 C7 H7 116.7(8) . . ? C7 C8 C9 123.24(8) . . ? C7 C8 H8 120.5(7) . . ? C9 C8 H8 116.3(7) . . ? C9 C9 C8 123.55(10) 5_756 . ? C9 C9 H9 118.3(8) 5_756 . ? C8 C9 H9 118.2(8) . . ? loop_ _geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag C6 C1 C2 C3 0.43(12) . . . . ? C7 C1 C2 C3 -179.27(7) . . . . ? C1 C2 C3 C4 0.59(13) . . . . ? C2 C3 C4 C5 -1.14(13) . . . . ? C3 C4 C5 C6 0.65(13) . . . . ? C4 C5 C6 C1 0.39(13) . . . . ? C2 C1 C6 C5 -0.92(12) . . . . ? C7 C1 C6 C5 178.77(8) . . . . ? C2 C1 C7 C8 -176.35(8) . . . . ? C6 C1 C7 C8 3.97(13) . . . . ? C1 C7 C8 C9 179.50(8) . . . . ? C7 C8 C9 C9 178.85(10) . . . 5_756 ? _diffrn_measured_fraction_theta_max 0.999 _diffrn_reflns_theta_full 30.03 _diffrn_measured_fraction_theta_full 0.999 _refine_diff_density_max 0.401 _refine_diff_density_min -0.210 _refine_diff_density_rms 0.055 #===END data_ortho370 _database_code_depnum_ccdc_archive 'CCDC 693556' _audit_creation_method SHELXL-97 _chemical_name_systematic ; E,E,E-1,6-diphenyl-1,3,5-hexatriene ; _chemical_name_common ? _chemical_melting_point 200.5_C _chemical_formula_moiety ? _chemical_formula_sum 'C18 H16' _chemical_formula_weight 232.31 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting orthorhombic _symmetry_space_group_name_H-M P_b_c_a loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, -y, z+1/2' '-x, y+1/2, -z+1/2' 'x+1/2, -y+1/2, -z' '-x, -y, -z' 'x-1/2, y, -z-1/2' 'x, -y-1/2, z-1/2' '-x-1/2, y-1/2, z' _cell_length_a 7.883(2) _cell_length_b 9.670(3) _cell_length_c 18.529(5) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 1412.4(7) _cell_formula_units_Z 4 _cell_measurement_temperature 370 _cell_measurement_reflns_used 3248 _cell_measurement_theta_min 2.2 _cell_measurement_theta_max 21.5 _exptl_crystal_description block _exptl_crystal_colour pale_yellow _exptl_crystal_size_max 0.30 _exptl_crystal_size_mid 0.28 _exptl_crystal_size_min 0.16 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.092 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 496 _exptl_absorpt_coefficient_mu 0.061 _exptl_absorpt_correction_type multi_scan _exptl_absorpt_correction_T_min 0.9818 _exptl_absorpt_correction_T_max 0.9902 _exptl_absorpt_process_details 'SADABS (Sheldrick, 2002)' _exptl_special_details ; The data collection covered over a full sphere of reciprocal space by a combination of four sets of exposures; each set had a different \f angle (0, 90, 180 and 270\%) for the crystal and each exposure of 20s covered 0.3\% in \w. The crystal-to-detector distance was 4 cm and the detector swing angle was -32\%. Crystal decay was monitored by repeating the measurement of the initial 50 frames at the end of data collection and analyzing the duplicate reflections. ; _diffrn_ambient_temperature 370 _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker SMART 1000 CCD diffractometer' _diffrn_measurement_method \w_scan _diffrn_detector_area_resol_mean 8.192 _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% 0 _diffrn_reflns_number 20490 _diffrn_reflns_av_R_equivalents 0.0275 _diffrn_reflns_av_sigmaI/netI 0.0197 _diffrn_reflns_limit_h_min -11 _diffrn_reflns_limit_h_max 11 _diffrn_reflns_limit_k_min -13 _diffrn_reflns_limit_k_max 13 _diffrn_reflns_limit_l_min -26 _diffrn_reflns_limit_l_max 26 _diffrn_reflns_theta_min 2.20 _diffrn_reflns_theta_max 30.08 _reflns_number_total 2071 _reflns_number_gt 874 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'SMART (Bruker, 1998)' _computing_cell_refinement 'SAINT (Bruker, 1998)' _computing_data_reduction SAINT _computing_structure_solution 'SHELXS-97 (Sheldrick, 2008)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 2008)' _computing_molecular_graphics 'SHELXTL (Sheldrick, 2008)' _computing_publication_material SHELXTL _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0969P)^2^+0.1205P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary ? _atom_sites_solution_hydrogens difmap _refine_ls_hydrogen_treatment refall _refine_ls_extinction_method SHELXL _refine_ls_extinction_coef 0.010(6) _refine_ls_extinction_expression Fc^*^=kFc[1+0.001xFc^2^\l^3^/sin(2\q)]^-1/4^ _refine_ls_number_reflns 2071 _refine_ls_number_parameters 115 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.1142 _refine_ls_R_factor_gt 0.0540 _refine_ls_wR_factor_ref 0.2354 _refine_ls_wR_factor_gt 0.1712 _refine_ls_goodness_of_fit_ref 1.022 _refine_ls_restrained_S_all 1.022 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group C1 C 0.9957(2) 0.3979(2) 0.61244(9) 0.0926(6) Uani 1 1 d . . . C2 C 1.0685(3) 0.5285(3) 0.60810(14) 0.1159(8) Uani 1 1 d . . . C3 C 1.0311(4) 0.6298(3) 0.65909(18) 0.1300(9) Uani 1 1 d . . . C4 C 0.9226(4) 0.6003(3) 0.71418(16) 0.1245(8) Uani 1 1 d . . . C5 C 0.8514(3) 0.4747(3) 0.71820(16) 0.1279(9) Uani 1 1 d . . . C6 C 0.8854(3) 0.3760(3) 0.66906(12) 0.1120(7) Uani 1 1 d . . . C7 C 1.0384(3) 0.2930(3) 0.55896(11) 0.1060(7) Uani 1 1 d . . . C8 C 0.9812(2) 0.1648(3) 0.55533(11) 0.1008(6) Uani 1 1 d . . . C9 C 1.0264(3) 0.0645(2) 0.50167(12) 0.1107(7) Uani 1 1 d . . . H2 H 1.137(3) 0.546(2) 0.5727(12) 0.124(8) Uiso 1 1 d . . . H3 H 1.073(4) 0.716(3) 0.6507(13) 0.154(10) Uiso 1 1 d . . . H4 H 0.902(4) 0.670(3) 0.7473(18) 0.163(10) Uiso 1 1 d . . . H5 H 0.769(4) 0.453(3) 0.7590(15) 0.177(10) Uiso 1 1 d . . . H6 H 0.833(3) 0.280(2) 0.6691(12) 0.136(7) Uiso 1 1 d . . . H7 H 1.121(3) 0.323(2) 0.5203(11) 0.125(6) Uiso 1 1 d . . . H8 H 0.902(3) 0.1426(19) 0.5943(11) 0.116(6) Uiso 1 1 d . . . H9 H 1.112(3) 0.097(2) 0.4626(12) 0.143(8) Uiso 1 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 C1 0.0762(10) 0.1098(14) 0.0918(12) 0.0154(10) -0.0095(8) 0.0095(9) C2 0.0959(14) 0.143(2) 0.1093(16) 0.0299(15) -0.0017(12) -0.0068(13) C3 0.1199(19) 0.1089(18) 0.161(2) 0.0177(19) -0.0328(18) -0.0056(15) C4 0.1098(17) 0.128(2) 0.136(2) -0.0045(18) -0.0123(15) 0.0297(15) C5 0.1097(16) 0.132(2) 0.142(2) 0.0027(17) 0.0189(15) 0.0163(14) C6 0.0973(13) 0.1140(16) 0.1248(16) 0.0075(13) 0.0184(12) 0.0046(12) C7 0.0857(12) 0.1383(19) 0.0941(13) 0.0160(12) 0.0028(10) 0.0056(11) C8 0.0826(11) 0.1283(17) 0.0915(13) 0.0056(12) -0.0006(10) 0.0060(11) C9 0.0911(13) 0.1409(18) 0.0999(13) 0.0015(16) -0.0048(10) 0.0090(13) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag C1 C6 1.379(3) . ? C1 C2 1.390(3) . ? C1 C7 1.457(3) . ? C2 C3 1.392(4) . ? C2 H2 0.86(2) . ? C3 C4 1.362(4) . ? C3 H3 0.91(3) . ? C4 C5 1.340(4) . ? C4 H4 0.93(3) . ? C5 C6 1.346(3) . ? C5 H5 1.02(3) . ? C6 H6 1.02(2) . ? C7 C8 1.320(3) . ? C7 H7 1.01(2) . ? C8 C9 1.434(3) . ? C8 H8 0.98(2) . ? C9 C9 1.317(5) 5_756 ? C9 H9 1.04(3) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C6 C1 C2 116.3(2) . . ? C6 C1 C7 123.8(2) . . ? C2 C1 C7 119.9(2) . . ? C1 C2 C3 120.8(3) . . ? C1 C2 H2 118.5(15) . . ? C3 C2 H2 120.6(15) . . ? C4 C3 C2 119.7(3) . . ? C4 C3 H3 123.2(17) . . ? C2 C3 H3 116.9(17) . . ? C5 C4 C3 119.6(3) . . ? C5 C4 H4 123.5(18) . . ? C3 C4 H4 116.9(18) . . ? C4 C5 C6 121.4(3) . . ? C4 C5 H5 119.8(17) . . ? C6 C5 H5 118.8(17) . . ? C5 C6 C1 122.1(2) . . ? C5 C6 H6 124.5(13) . . ? C1 C6 H6 113.4(13) . . ? C8 C7 C1 127.5(2) . . ? C8 C7 H7 117.1(12) . . ? C1 C7 H7 115.4(12) . . ? C7 C8 C9 125.8(2) . . ? C7 C8 H8 112.7(11) . . ? C9 C8 H8 121.4(11) . . ? C9 C9 C8 126.5(3) 5_756 . ? C9 C9 H9 117.2(13) 5_756 . ? C8 C9 H9 116.3(13) . . ? loop_ _geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag C6 C1 C2 C3 0.4(3) . . . . ? C7 C1 C2 C3 -179.25(18) . . . . ? C1 C2 C3 C4 0.4(3) . . . . ? C2 C3 C4 C5 -0.9(4) . . . . ? C3 C4 C5 C6 0.4(4) . . . . ? C4 C5 C6 C1 0.5(4) . . . . ? C2 C1 C6 C5 -0.9(3) . . . . ? C7 C1 C6 C5 178.8(2) . . . . ? C6 C1 C7 C8 0.2(3) . . . . ? C2 C1 C7 C8 179.91(19) . . . . ? C1 C7 C8 C9 179.98(17) . . . . ? C7 C8 C9 C9 178.3(2) . . . 5_756 ? _diffrn_measured_fraction_theta_max 0.999 _diffrn_reflns_theta_full 30.08 _diffrn_measured_fraction_theta_full 0.999 _refine_diff_density_max 0.170 _refine_diff_density_min -0.090 _refine_diff_density_rms 0.020 #===END data_orthort2 _database_code_depnum_ccdc_archive 'CCDC 693557' _audit_creation_method SHELXL-97 _chemical_name_systematic ; E,E,E-1,6-diphenyl-1,3,5-hexatriene ; _chemical_name_common ? _chemical_melting_point 200.5_C _chemical_formula_moiety ? _chemical_formula_sum 'C18 H16' _chemical_formula_weight 232.31 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting orthorhombic _symmetry_space_group_name_H-M P_b_c_a loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, -y, z+1/2' '-x, y+1/2, -z+1/2' 'x+1/2, -y+1/2, -z' '-x, -y, -z' 'x-1/2, y, -z-1/2' 'x, -y-1/2, z-1/2' '-x-1/2, y-1/2, z' _cell_length_a 7.7439(5) _cell_length_b 9.8691(7) _cell_length_c 18.1365(12) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 1386.09(16) _cell_formula_units_Z 4 _cell_measurement_temperature 300 _cell_measurement_reflns_used 3568 _cell_measurement_theta_min 2.2 _cell_measurement_theta_max 24.3 _exptl_crystal_description block _exptl_crystal_colour pale_yellow _exptl_crystal_size_max 0.30 _exptl_crystal_size_mid 0.28 _exptl_crystal_size_min 0.16 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.113 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 496 _exptl_absorpt_coefficient_mu 0.063 _exptl_absorpt_correction_type multi_scan _exptl_absorpt_correction_T_min 0.9815 _exptl_absorpt_correction_T_max 0.9901 _exptl_absorpt_process_details 'SADABS (Sheldrick, 2002)' _exptl_special_details ; The data collection covered over a full sphere of reciprocal space by a combination of four sets of exposures; each set had a different \f angle (0, 90, 180 and 270\%) for the crystal and each exposure of 10s covered 0.3\% in \w. The crystal-to-detector distance was 4 cm and the detector swing angle was -32\%. Crystal decay was monitored by repeating the measurement of the initial 50 frames at the end of data collection and analyzing the duplicate reflections. ; _diffrn_ambient_temperature 300 _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker SMART 1000 CCD diffractometer' _diffrn_measurement_method \w_scan _diffrn_detector_area_resol_mean 8.192 _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% 0 _diffrn_reflns_number 19949 _diffrn_reflns_av_R_equivalents 0.0256 _diffrn_reflns_av_sigmaI/netI 0.0128 _diffrn_reflns_limit_h_min -10 _diffrn_reflns_limit_h_max 10 _diffrn_reflns_limit_k_min -13 _diffrn_reflns_limit_k_max 13 _diffrn_reflns_limit_l_min -25 _diffrn_reflns_limit_l_max 25 _diffrn_reflns_theta_min 2.25 _diffrn_reflns_theta_max 30.03 _reflns_number_total 2022 _reflns_number_gt 1135 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'SMART (Bruker, 1998)' _computing_cell_refinement 'SAINT (Bruker, 1998)' _computing_data_reduction SAINT _computing_structure_solution 'SHELXS-97 (Sheldrick, 2008)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 2008)' _computing_molecular_graphics 'SHELXTL (Sheldrick, 2008)' _computing_publication_material SHELXTL _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0358P)^2^+0.1687P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary ? _atom_sites_solution_hydrogens difmap _refine_ls_hydrogen_treatment refall _refine_ls_extinction_method SHELXL _refine_ls_extinction_coef 0.0056(11) _refine_ls_extinction_expression Fc^*^=kFc[1+0.001xFc^2^\l^3^/sin(2\q)]^-1/4^ _refine_ls_number_reflns 2022 _refine_ls_number_parameters 115 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0816 _refine_ls_R_factor_gt 0.0398 _refine_ls_wR_factor_ref 0.1130 _refine_ls_wR_factor_gt 0.0900 _refine_ls_goodness_of_fit_ref 0.994 _refine_ls_restrained_S_all 0.994 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group C1 C 0.99511(13) 0.39273(12) 0.61288(6) 0.0629(3) Uani 1 1 d . . . C2 C 1.06391(17) 0.52238(15) 0.60651(8) 0.0767(4) Uani 1 1 d . . . C3 C 1.0257(2) 0.62194(15) 0.65774(9) 0.0867(4) Uani 1 1 d . . . C4 C 0.91963(19) 0.59389(16) 0.71614(9) 0.0846(4) Uani 1 1 d . . . C5 C 0.85043(19) 0.46744(16) 0.72286(9) 0.0859(4) Uani 1 1 d . . . C6 C 0.88665(17) 0.36893(15) 0.67245(7) 0.0757(4) Uani 1 1 d . . . C7 C 1.03844(15) 0.28866(14) 0.55868(7) 0.0710(3) Uani 1 1 d . . . C8 C 0.98069(15) 0.16206(14) 0.55604(7) 0.0703(3) Uani 1 1 d . . . C9 C 1.02708(17) 0.06386(14) 0.50117(7) 0.0751(4) Uani 1 1 d . . . H2 H 1.1375(17) 0.5399(12) 0.5663(7) 0.086(4) Uiso 1 1 d . . . H3 H 1.0726(18) 0.7079(15) 0.6504(7) 0.101(5) Uiso 1 1 d . . . H4 H 0.895(2) 0.6654(16) 0.7527(10) 0.116(5) Uiso 1 1 d . . . H5 H 0.773(2) 0.4477(15) 0.7650(8) 0.114(5) Uiso 1 1 d . . . H6 H 0.8367(17) 0.2776(14) 0.6764(7) 0.093(4) Uiso 1 1 d . . . H7 H 1.1171(17) 0.3170(13) 0.5189(7) 0.088(4) Uiso 1 1 d . . . H8 H 0.9019(17) 0.1316(11) 0.5934(6) 0.077(4) Uiso 1 1 d . . . H9 H 1.1061(18) 0.0947(13) 0.4627(7) 0.091(4) Uiso 1 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 C1 0.0509(6) 0.0745(7) 0.0633(6) 0.0110(6) -0.0062(5) 0.0059(5) C2 0.0670(8) 0.0888(10) 0.0744(8) 0.0193(7) -0.0023(6) -0.0034(7) C3 0.0839(9) 0.0694(9) 0.1067(11) 0.0112(8) -0.0210(9) -0.0015(7) C4 0.0759(9) 0.0841(10) 0.0938(10) -0.0042(8) -0.0103(8) 0.0204(7) C5 0.0745(8) 0.0916(10) 0.0918(10) -0.0006(8) 0.0150(8) 0.0118(7) C6 0.0673(7) 0.0759(8) 0.0840(8) 0.0051(7) 0.0128(6) 0.0019(6) C7 0.0595(6) 0.0906(9) 0.0627(7) 0.0093(6) 0.0018(5) 0.0044(6) C8 0.0584(7) 0.0880(9) 0.0645(7) 0.0023(6) -0.0005(6) 0.0051(6) C9 0.0627(7) 0.0946(9) 0.0679(7) -0.0034(8) -0.0022(6) 0.0072(7) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag C1 C6 1.3885(16) . ? C1 C2 1.3908(17) . ? C1 C7 1.4608(17) . ? C2 C3 1.384(2) . ? C2 H2 0.941(13) . ? C3 C4 1.369(2) . ? C3 H3 0.932(15) . ? C4 C5 1.364(2) . ? C4 H4 0.987(17) . ? C5 C6 1.3637(19) . ? C5 H5 0.992(16) . ? C6 H6 0.984(14) . ? C7 C8 1.3278(18) . ? C7 H7 0.985(13) . ? C8 C9 1.4349(18) . ? C8 H8 0.960(12) . ? C9 C9 1.329(3) 5_756 ? C9 H9 0.977(13) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C6 C1 C2 116.87(12) . . ? C6 C1 C7 122.93(12) . . ? C2 C1 C7 120.19(11) . . ? C3 C2 C1 121.02(13) . . ? C3 C2 H2 121.2(8) . . ? C1 C2 H2 117.7(8) . . ? C4 C3 C2 120.27(14) . . ? C4 C3 H3 121.9(9) . . ? C2 C3 H3 117.8(9) . . ? C5 C4 C3 119.35(15) . . ? C5 C4 H4 121.4(9) . . ? C3 C4 H4 119.3(9) . . ? C4 C5 C6 120.78(15) . . ? C4 C5 H5 119.2(9) . . ? C6 C5 H5 120.1(9) . . ? C5 C6 C1 121.70(14) . . ? C5 C6 H6 121.6(8) . . ? C1 C6 H6 116.7(8) . . ? C8 C7 C1 127.48(12) . . ? C8 C7 H7 116.7(7) . . ? C1 C7 H7 115.8(7) . . ? C7 C8 C9 125.18(13) . . ? C7 C8 H8 118.9(7) . . ? C9 C8 H8 115.9(7) . . ? C9 C9 C8 125.72(17) 5_756 . ? C9 C9 H9 118.1(8) 5_756 . ? C8 C9 H9 116.2(8) . . ? loop_ _geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag C6 C1 C2 C3 0.31(18) . . . . ? C7 C1 C2 C3 -179.35(11) . . . . ? C1 C2 C3 C4 0.4(2) . . . . ? C2 C3 C4 C5 -0.8(2) . . . . ? C3 C4 C5 C6 0.4(2) . . . . ? C4 C5 C6 C1 0.3(2) . . . . ? C2 C1 C6 C5 -0.65(18) . . . . ? C7 C1 C6 C5 179.00(12) . . . . ? C6 C1 C7 C8 2.11(19) . . . . ? C2 C1 C7 C8 -178.25(12) . . . . ? C1 C7 C8 C9 179.71(11) . . . . ? C7 C8 C9 C9 178.53(15) . . . 5_756 ? _diffrn_measured_fraction_theta_max 1.000 _diffrn_reflns_theta_full 30.03 _diffrn_measured_fraction_theta_full 1.000 _refine_diff_density_max 0.107 _refine_diff_density_min -0.100 _refine_diff_density_rms 0.022