Supplementary Material

Control and interconversion of cocrystal stoichiometry in grinding: stepwise mechanism for the formation of a hydrogen-bonded cocrystal

Shyam Karki, Tomislav Friščić and William Jones*

Figure S1	PXRD patterns for screening experiments involving na and oxa in 1:1	3
	stoichiometric ratio.	
Figure S2	PXRD patterns for screening experiments involving na and oxa in 2:1	4
	stoichiometric ratio.	
Figure S3	PXRD patterns for screening experiments involving na and mal in 1:1	5
	stoichiometric ratio.	
Figure S4	PXRD patterns for screening experiments involving na and mal in 2:1	6
0	stoichiometric ratio.	
Figure S5	PXRD patterns for screening experiments involving na and suc in 1:1	7
0	stoichiometric ratio.	
Figure S6	PXRD patterns for screening experiments involving na and suc in 2:1	8
0	stoichiometric ratio.	
Figure S7	PXRD patterns for screening experiments involving na and glu in 1:1	9
0	stoichiometric ratio.	
Figure S8	PXRD patterns for screening experiments involving na and glu in 2:1	10
0	stoichiometric ratio.	
Figure S9	PXRD patterns for screening experiments involving na and adi in 1:1	11
0	stoichiometric ratio.	
Figure S10	PXRD patterns for screening experiments involving na and adi in 2:1	12
0	stoichiometric ratio.	
Figure S11	PXRD patterns for screening experiments involving na and pim in 1:1	13
8	stoichiometric ratio.	
Figure S12	PXRD patterns for screening experiments involving na and pim in 2:1	14
8	stoichiometric ratio.	
Figure S13	PXRD patterns for screening experiments involving na and sub in 1:1	15
0	stoichiometric ratio.	
Figure S14	PXRD patterns for screening experiments involving na and sub in 2:1	16
		_

	stoichiometric ratio	
Figure S15	PXRD patterns for screening experiments involving na and aze in 1:1	17
Figure S16	PXRD patterns for screening experiments involving na and aze in 2:1	18
Figure S17	stoichiometric ratio. PXRD patterns for screening experiments involving na and seb in 1:1	19
Figure S18	stoichiometric ratio. PXRD patterns for screening experiments involving na and seb in 2 ⁻¹	20
	stoichiometric ratio.	-
Figure S19	PXRD patterns for screening experiments involving na and fum in 1:1	21
Figure S20	stoichiometric ratio. PXRD patterns for screening experiments involving na and fum in 2:1 stoichiometric ratio	22
Figure S21	DSC thermogram for the cocrystallisation of na and mal from the melt	23
~	in respective stoichiometric ratio 1:1.	• •
Figure S22	DSC thermogram for the cocrystallisation of na and mal from the melt in respective stoichiometric ratio 2:1.	23
Figure S23	DSC thermogram for the cocrystallisation of na and suc from the melt	24
Figure S24	IN respective stoichiometric ratio 1:1. DSC thermogram for the cocrystallisation of na and suc from the melt	24
i igui e >= i	in respective stoichiometric ratio 2:1.	
Figure S25	DSC thermogram for the cocrystallisation of na and glu from the melt	25
Figure \$26	In respective stoichiometric ratio 1:1.	25
Figure 520	in respective stoichiometric ratio 2:1.	23
Figure S27	DSC thermogram for the cocrystallisation of na and adi from the melt	26
E:	in respective stoichiometric ratio 1:1.	26
Figure S28	in respective stoichiometric ratio 2.1	26
Figure S29	DSC thermogram for the cocrystallisation of na and pim from the melt	27
	in respective stoichiometric ratio 1:1.	
Figure S30	DSC thermogram for the cocrystallisation of na and pim from the melt	27
Figure S31	DSC thermogram for the cocrystallisation of na and sub from the melt	28
	in respective stoichiometric ratio 1:1.	
Figure S32	DSC thermogram for the cocrystallisation of na and sub from the melt	28
Figure \$33	In respective stoichiometric ratio 2:1. DSC thermogram for the cocrystallisation of \mathbf{n}_{2} and \mathbf{a}_{2} from the melt	29
Figure 555	in respective stoichiometric ratio 1:1.	2)
Figure S34	DSC thermogram for the cocrystallisation of na and aze from the melt	29
F' 925	in respective stoichiometric ratio 2:1.	20
Figure S35	DSC thermogram for the cocrystallisation of na and seb from the melt in respective stoichiometric ratio 1:1	30
Figure S36	DSC thermogram for the cocrystallisation of na and seb from the melt in respective stoichiometric ratio 2:1.	30
	i ±	1

Figure S1. PXRD patterns for screening experiments involving **na** and **oxa** in 1:1 stoichiometric ratio. Screening from the melt was not performed due to the sensitivity of oxalic acid to elevated temperatures.

Figure S2. PXRD patterns for screening experiments involving **na** and **oxa** in 2:1 stoichiometric ratio. Screening from the melt was not performed due to the sensitivity of oxalic acid to elevated temperatures.

Figure S3. PXRD patterns for screening experiments involving **na** and **mal** in 1:1 stoichiometric ratio.

Figure S4. PXRD patterns for screening experiments involving **na** and **mal** in 2:1 stoichiometric ratio.

Figure S5. PXRD patterns for screening experiments involving **na** and **suc** in 1:1 stoichiometric ratio.

Electronic Supplementary Material for CrystEngComm This journal is (c) The Royal Society of Chemistry 2008

Figure S6. PXRD patterns for screening experiments involving **na** and **suc** in 2:1 stoichiometric ratio.

Figure S7. PXRD patterns for screening experiments involving **na** and **glu** in 1:1 stoichiometric ratio.

Figure S8. PXRD patterns for screening experiments involving **na** and **glu** in 2:1 stoichiometric ratio.

Figure S9. PXRD patterns for screening experiments involving **na** and **adi** in 1:1 stoichiometric ratio.

Figure S10. PXRD patterns for screening experiments involving **na** and **adi** in 2:1 stoichiometric ratio.

Figure S11. PXRD patterns for screening experiments involving **na** and **pim** in 1:1 stoichiometric ratio.

Figure S12. PXRD patterns for screening experiments involving **na** and **pim** in 2:1 stoichiometric ratio.

Figure S13. PXRD patterns for screening experiments involving **na** and **sub** in 1:1 stoichiometric ratio.

Figure S14. PXRD patterns for screening experiments involving **na** and **sub** in 2:1 stoichiometric ratio.

Figure S15. PXRD patterns for screening experiments involving **na** and **aze** in 1:1 stoichiometric ratio.

Figure S16. PXRD patterns for screening experiments involving **na** and **aze** in 2:1 stoichiometric ratio.

Figure S17. PXRD patterns for screening experiments involving **na** and **seb** in 1:1 stoichiometric ratio.

Figure S18. PXRD patterns for screening experiments involving **na** and **seb** in 2:1 stoichiometric ratio.

Figure S19. PXRD patterns for screening experiments involving **na** and **fum** in 1:1 stoichiometric ratio.

Figure S20. PXRD patterns for screening experiments involving **na** and **fum** in 2:1 stoichiometric ratio.

Figure S21. DSC thermogram for the cocrystallisation of **na** and **mal** from the melt in respective stoichiometric ratio 1:1.

Figure S22. DSC thermogram for the cocrystallisation of **na** and **mal** from the melt in respective stoichiometric ratio 2:1.

Figure S23. DSC thermogram for the cocrystallisation of **na** and **suc** from the melt in respective stoichiometric ratio 1:1.

Figure S24. DSC thermogram for the cocrystallisation of **na** and **suc** from the melt in respective stoichiometric ratio 2:1.

Figure S25. DSC thermogram for the cocrystallisation of **na** and **glu** from the melt in respective stoichiometric ratio 1:1.

Figure 26. DSC thermogram for the cocrystallisation of **na** and **glu** from the melt in respective stoichiometric ratio 2:1.

Figure S27. DSC thermogram for the cocrystallisation of **na** and **adi** from the melt in respective stoichiometric ratio 1:1.

Figure S28. DSC thermogram for the cocrystallisation of **na** and **adi** from the melt in respective stoichiometric ratio 2:1.

Figure S29. DSC thermogram for the cocrystallisation of **na** and **pim** from the melt in respective stoichiometric ratio 1:1.

Figure S30. DSC thermogram for the cocrystallisation of **na** and **pim** from the melt in respective stoichiometric ratio 2:1.

Figure S31. DSC thermogram for the cocrystallisation of **na** and **sub** from the melt in respective stoichiometric ratio 1:1.

Figure S32. DSC thermogram for the cocrystallisation of **na** and **sub** from the melt in respective stoichiometric ratio 2:1.

Figure S33. DSC thermogram for the cocrystallisation of **na** and **aze** from the melt in respective stoichiometric ratio 1:1.

Figure S34. DSC thermogram for the cocrystallisation of **na** and **aze** from the melt in respective stoichiometric ratio 2:1.

Figure S35. DSC thermogram for the cocrystallisation of **na** and **seb** from the melt in respective stoichiometric ratio 1:1.

Figure S36. DSC thermogram for the cocrystallisation of **na** and **seb** from the melt in respective stoichiometric ratio 2:1.