Supporting Information

Assembly of two 3-D metal-organic frameworks from $\operatorname{Cd}(I I)$ and

 4,5-imidazoledicarboxylic acid or 2-ethyl-4,5-imidazoledicarboxylic acidShuang Wang, Lirong Zhang, Guanghua Li, Qisheng Huo and Yunling Liu*

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China. E-mail: yunling@jlu.edu.cn

Fig. S1 Simulated and experimental powder X-ray diffraction patterns of 1(a) and 2(b).

Fig. S2 IR spectra for compound 1(a) and 2(b).

Fig. S3 TG curves for compound 1(a) and 2(b).

Fig. S4 The 3-D framework structure of 1: (a) Ball and stick view of right-handed (R) and left-handed (L) helical chains; (b) The 2-D layer viewed along the c-axis and the topology of 2-D layer with distorted Kagomé net; (c) The 3-D framework of 1 formed by 2-D layers and 1-D chains viewed along the b-axis; (d) The framework topology of 1 viewed along the b-axis. (Color code: Cd1 and Cd2 atom: green; Cd3 atom: pink; O: red; C: grey, N : blue, the IMDC ligands are denoted by yellow spheres in the topology).

Fig. S5 The topology of the 3D framework of 2 viewed along the c-axis and a-axis. (Color code: Cd: green; the 2-EtIMDC ligands as 4-connected nodes are denoted by yellow spheres).

Table S1. Hydrogen bonds for $\mathbf{1}$ [\AA and deg.].

$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$	$\mathrm{d}(\mathrm{D}-\mathrm{H})$	$\mathrm{d}(\mathrm{H} \cdots \mathrm{A})$	$\mathrm{d}(\mathrm{D} \cdots \mathrm{A})$	$<(\mathrm{DHA})$
$\mathrm{O}(9)-\mathrm{H}(9 \mathrm{~A}) \cdots \mathrm{N}(4) \# 7$	$0.96(8)$	$2.43(4)$	$3.333(7)$	$157(8)$
$\mathrm{O}(9)-\mathrm{H}(9 \mathrm{~B}) \cdots \mathrm{O}(6) \# 2$	$0.96(6)$	$2.18(3)$	$3.123(7)$	$169(9)$
$\mathrm{O}(10)-\mathrm{H}(10 \mathrm{~A}) \cdots \mathrm{O}(1 \mathrm{~W}) \# 8$	$0.99(10)$	$2.10(10)$	$2.949(11)$	$143(8)$
$\mathrm{O}(10)-\mathrm{H}(10 \mathrm{~A}) \cdots \mathrm{O}(4) \# 8$	$0.99(10)$	$2.53(10)$	$3.250(9)$	$130(7)$
$\mathrm{O}(10)-\mathrm{H}(10 \mathrm{~B}) \cdots \mathrm{O}(1 \mathrm{~W}) \# 9$	$1.00(10)$	$1.98(10)$	$2.896(10)$	$152(8)$
$\mathrm{O}(10)-\mathrm{H}(10 \mathrm{~B}) \cdots \mathrm{O}(10) \# 10$	$1.00(10)$	$2.38(10)$	$3.000(11)$	$119(7)$
$\mathrm{O}(1 \mathrm{~W})-\mathrm{H}(1 \mathrm{~A}) \cdots \mathrm{O}(8) \# 7$	$0.86(10)$	$2.31(11)$	$3.031(9)$	$141(9)$
$\mathrm{O}(1 \mathrm{~W})-\mathrm{H}(1 \mathrm{~B}) \cdots \mathrm{O}(4)$	$0.86(11)$	$2.07(11)$	$2.885(8)$	$157(10)$

[^0]
[^0]: Symmetry transformations used to generate equivalent atoms:
 $\# 1-x+1 / 2, y-1 / 2, z \quad \# 2-x, y-1 / 2,-z+1 / 2 \quad \# 3-x+1 / 2,-y+1, z-1 / 2 \quad \# 4-x+1 / 2, y+1 / 2, z \quad \# 5-x$, $y+1 / 2,-z+1 / 2 \quad \# 6-x+1 / 2,-y+1, z+1 / 2 \quad \# 7 x-1 / 2, y,-z+1 / 2 \quad \# 8-x,-y+1,-z \quad \# 9 x, y-1, z \quad \# 10-x,-y$, -Z

