Stepwise Dimerization of Double [2+2] reaction in the Co-crystals of 1,5-bis(4-pyridyl)-1,4-pentadiene-3-one and Phloroglucinol: A Single Crystal to Single Crystal Transformation

Ramkinkar Santra and Kumar Biradha*

Supporting Information (8 pages)

(synthesis details, NMR-assignment, Hydrogen bonding details and NMR spectra)

Crystallization of 2 :.

A ($1: 1$) mixture of resorcinol $(0.020 \mathrm{~g})$ and $\mathbf{1}(0.0436 \mathrm{~g})$ were dissolved in ethyl acetate (7 ml .) and left for crystallization. Brownish crystals of 2 were formed after 36 hours in 75% yield. The crystallization with many other solvents or solvent mixtures such as acetone, acetonitrile benzene-THF, toluene-acetonitrile resulted in similar type of co-crystals. The similarity of these crystals has been identified by determining the unit cell parameters and melting points $\left(185^{\circ} \mathrm{C}-190^{\circ} \mathrm{C}\right)$.

Crystallization of 3:

A $1: 1$ mixture of $1(.05 \mathrm{~g}, .212 \mathrm{mmol})$ and phloroglucinol, $2 \mathrm{H}_{2} \mathrm{O}(.0343 \mathrm{~g})$ was dissolved in 15 ml of acetonitrile and left at rt . in dark. Light yellow rod like crystal were obtained in $69 \%(.0584 \mathrm{~g})$ yield in 12 hour. mp: single crystal started to loose solvent above $75^{\circ} \mathrm{C}$ then melting started at $185-190^{\circ} \mathrm{C}$ with gradual blackening and no clear melting up to $300^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\left(400 \mathrm{MHz} . \mathrm{D}_{6} \mathrm{DMSO}\right) \delta$ $2.057(\mathrm{~s} ; 3 \mathrm{H}$, acetonitrile proton); $\delta 5.634(\mathrm{~s} ; 3 \mathrm{H}$, phloroglucinol-OH); $\delta 7.559(\mathrm{~d} ;$ $\mathrm{J}=16 \mathrm{~Hz} ; 2 \mathrm{H}$, alkene proton β to Py); $\delta 7.730(\mathrm{~d} ; \mathrm{J}=5.2 \mathrm{~Hz} ; 4 \mathrm{H}, \mathrm{Py}-\beta \mathrm{H}) ; \delta 7.778$ (d; J = $16 \mathrm{~Hz} ; 2 \mathrm{H}$, alkene proton α to Py); $\delta 8.668(\mathrm{~d} ; \mathrm{J}=5.2 \mathrm{~Hz} ; 4 \mathrm{H}, \mathrm{Py}-\alpha \mathrm{H}) ; \delta$ 8.925 ($\mathrm{s} ; 3 \mathrm{H}$, phloroglucinol phenyl proton).

Preparation of 4:

Crystals, after separation from crystallization solvent, were directly exposed under sunlight or uv-light(medium pressure Hg vapour lamp:350-420 nm) putting on watch-glass. Larger crystals started to changing white in colour with disintegrating into smaller fragments while smaller crystal remain intact and 100% reaction occurred in 3-4 hours or 15 minute in sunlight or uv-light respectively (checked by TLC). ${ }^{1} \mathrm{H}$ NMR: ($400 \mathrm{MHz} . \mathrm{D}_{6} \mathrm{DMSO}$) $\delta 2.057$ (s; 6H); $\delta 4.429$ (d; $J=5.6 \mathrm{~Hz} ; 4 \mathrm{H}, \mathrm{Cy}$-butane proton β to Py); $\delta 4.642$ (d; $J=5.6 \mathrm{~Hz} ; 4 \mathrm{H}$, Cy-butane proton α to Py); $\delta 5.633(\mathrm{~s} ; 6 \mathrm{H}) \delta 7.080(\mathrm{~d} ; J=5.6 \mathrm{~Hz} ; 8 \mathrm{H}, \mathrm{Py}-\beta \mathrm{H}) ; \delta$ 8.293 (d; J = 5.6 Hz; 8H, Py- $\alpha \mathrm{H}) ; ~ \delta 8.928(\mathrm{~s} ; 6 \mathrm{H})$.

Separation of TCD from 4:

About 1 g of 100% photolized product 3 was dissoldved in 50 ml water by adding 1 N HCl solution dropwise (until all material dissolved). The yellow coloured solution was extracted with 50 ml ethyl acetate 3-4 times. The aquous part was then neutralized by dropwise addition of dilute aquous tri-ethylamine solution. The white precipitation obtained was filtered and washed with water and dried.The dimerTCD obtained in quantitative yield were recrystalized from THF as a white crystals. mp: $210-215^{\circ} \mathrm{C}$.

Generation of partially reacted material of $3 \boldsymbol{\&}$ the spectral proof for stepwise formation of TCD:

A partially reacted 3 in which TCD is in $40-60 \%$ in mole ratio can be generated By irradiating crystals directly either in sunlight for 2 hours or in UV light for 6 minutes putting on watch glass.

For monitoring the photolysis reaction of $\mathbf{3}$ by ${ }^{1} \mathrm{HNMR}$ spectra the light(h V) source used was room light i.e. of low intensity. From this study and also from the ${ }^{1}$ HNMR spectra for that irradiated 2 hours in sunlight we characterized a full set of peak position for the product of single $(2+2)$ reaction (scheme-1): ${ }^{1} H$ NMR: (400 MHz. D ${ }_{6}$ DMSO) $\delta 4.295$ (d; $J=6 \mathrm{~Hz} ; 2 \mathrm{H}$, Cy-butane proton β to Py); δ $4.784(\mathrm{~d} ; J=6 \mathrm{~Hz} ; 2 \mathrm{H}, \mathrm{Cy}$-butane proton α to Py), $\delta 7.121(\mathrm{~d} ; J=16 \mathrm{~Hz} ; 2 \mathrm{H}$, alkene proton β to Py); $\delta 7.159$ (d; $J=5.6 \mathrm{~Hz} ; 4 \mathrm{H}, \mathrm{Py}-\beta \mathrm{H}$ attach to Cy-butane); δ $7.542(\mathrm{~d} ; J=5.6 \mathrm{~Hz} ; 4 \mathrm{H}$, Py- $\beta \mathrm{H}$ attach to alkene); $\delta 7.554$ (d; $J=16 \mathrm{~Hz} ; 2 \mathrm{H}$, alkene proton α to Py); $\delta 8.316$ (d; $J=5.6 \mathrm{~Hz} ; 4 \mathrm{H}, \mathrm{Py}-\alpha \mathrm{H}$ attach to Cy-butane); δ $8.533(\mathrm{~d} ; J=5.6 \mathrm{~Hz} ; 4 \mathrm{H}, \mathrm{Py}-\alpha \mathrm{H}$ attach to alkene).Table. 1 shows the significant shift in δ value for that 1, dimer I and the product of single (2+2) reaction.

Electronic Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry 2008

Scheme-1: Product of single $(2+2)$ reaction.

TABLE 1: Showing different ${ }^{1} \mathrm{HNMR}$ Position (δ value).

Comp.	Py- α H Attach To Cy- butane	Py- β H Attach To Cy-butane	Py- α H Attach to alkene	Py- β H Attach to alkene	Alkene Proton $\alpha-$-to Py	Alkene Proton α-to keto	Butane Proton α-to Py	Butane Proton $\alpha-t o ~ k e t o ~$
Reactant 1		8.668	7.730	7.778	7.559			
Single $(2+2)$ Pdt.	8.316	7.159	8.533	7.542	7.554	7.121	4.784	4.295
Double $(2+2)$ Pdt.	8.293	7.080					4.642	4.429

Crystal data for $\mathbf{1}\left(\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{1}\right)$: $M=236.27$, Monoclinic, $\mathrm{P} 2(1) / \mathrm{n}, \mathrm{a}=8.1243(4) \AA, \mathrm{b}=$ $15.3477(7) \AA, c=10.0546(4) \AA, \beta=104.0370(10)^{\circ}, V=1216.26(9) \AA^{3}, Z=4 ; 2089$ reflections out of 2932 unique reflections with $\mathrm{I}>2 \sigma(\mathrm{I}), 2.47<\theta<28.00^{\circ}$, final $\mathrm{R}_{1}=$ $0.0441, \mathrm{wR}_{2}=0.1266$.

Crystal data for 2: $\left(\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}\right)$: $M=346.37$, Monoclinic, $\mathrm{P} 2(1) / \mathrm{c}$, $\mathrm{a}=9.543(4) \AA, \mathrm{b}=$ $21.387(9) \AA, c=8.802(4) \AA, \beta=94.868(13)^{\circ}, V=1790.0(13) \AA^{3}, Z=4 ; 2520$ reflections out of 3912 unique reflections with $\mathrm{I}>2 \sigma(\mathrm{I}), 1.90<\theta<27.16^{\circ}$, final $\mathrm{R}_{1}=0.0427$, $\mathrm{wR}_{2}=$ 0.1155 .

Hydrogen Bonding parameter for 3

O(1)	-- H(10)	N(21)	3565.01	1.86(4)	2.761(3)	177(3)
0(3)	-- H(30)	. $\mathrm{N}(31)$	4464.01]	1.94 (3)	2.803(3)	171(3)
0(5)	-- H(50)	. N(100)		2.03(3)	2.828(3)	162(3)
C(11)	-- H(11)	. 0 (5)	5555.02]	2.55	3.350(3)	145
0(3)		$C(101)$	555.03]		3.202(3)	-0.02

Translation of ARU-code to Equivalent Position Code

${ }^{1}$ HNMR spectra of $\mathbf{3}$.

${ }^{1}$ HNMR spectra of 4.

${ }^{1}$ HNMR spectra of partially irradiated $\mathbf{3}$ in sunlight for 2 hours.

${ }^{1}$ HNMR spectra of $\mathbf{3}$ after 2 days irradiation in room light.

${ }^{\mathbf{1}}$ HNMR spectra of $\mathbf{3}$ after 4 days irradiation in room light.

${ }^{1}$ HNMR spectra of $\mathbf{3}$ after 15 days irradiation in room light.

