Supporting Inormtion

Structural Diversity and Retro-Crystal Engineering Analysis of Iodometalate hybrids

Nicolas Mercier,* Nicolas Louvain and Wenhua Bi

Table S1. Crystal data and structure refinement for (NC(CH₂)₂NH₃)₂PbI₄.

Identification code	PbCNC2
Empirical formula	C6 H14 I4 N4 Pb
Formula weight	857.00
Temperature	293(2) K
Wavelength	0.71073 A
Crystal system, space group	Orthorhombic, Pnma
Unit cell dimensions	a = 8.6370(4) A alpha = 90 deg.
	b = 20.346(2) A beta = 90 deg.
	c = 9.7847(5) A gamma = 90 deg.
Volume	1719.5(2) A^3
Z, Calculated density	4, 3.311 Mg/m^3
Absorption coefficient	16.977 mm^-1
F(000)	1488
Crystal size	0.276 x 0.106 x 0.088 mm
Theta range for data collection	3.66 to 30.02 deg.
Limiting indices	-12<=h<=10, -28<=k<=28, -13<=l<=13
Reflections collected / unique	26269 / 2514 [R(int) = 0.0505]
Completeness to theta $= 30.02$	97.6 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.2727 and 0.0894
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	2514 / 0 / 75
Goodness-of-fit on F^2	1.024
Final R indices [I>2sigma(I)]	R1 = 0.0332, $wR2 = 0.0522$
R indices (all data)	R1 = 0.0667, wR2 = 0.0581
Extinction coefficient	0.00015(3)
Largest diff. peak and hole	1.426 and -1.250 e.A^-3

Pb(1)-I(2)	3.1648(6)	N(1)-H(1C)	0.8900
Pb(1)-I(3)	3.1738(6)	N(1)-H(1D)	0.8900
Pb(1)-I(1)	3.1831(5)	N(1)-H(1E)	0.8900
Pb(1)-I(1)#1	3.1831(5)	C(2)-C(3)	1.479(9)
Pb(1)-I(2)#2	3.3522(6)	C(2)-C(1)	1.503(8)
Pb(1)-I(3)#3	3.3692(6)	C(2)-H(2A)	0.9700
I(3)-Pb(1)#4	3.3692(6)	C(2)-H(2B)	0.9700
I(2)-Pb(1)#5	3.3522(6)	C(1)-H(1A)	0.9700
N(2)-C(3)	1.182(8)	C(1)-H(1B)	0.9700
N(1)-C(1)	1.482(8)		
I(2)-Pb(1)-I(3)	93.133(16)	C(1)-N(1)-H(1D)	109.5
I(2)-Pb(1)-I(1)	94.680(11)	H(1C)-N(1)-H(1D)	109.5
I(3)-Pb(1)-I(1)	90.518(11)	C(1)-N(1)-H(1E)	109.5
I(2)-Pb(1)-I(1)#1	94.680(11)	H(1C)-N(1)-H(1E)	109.5
I(3)-Pb(1)-I(1)#1	90.518(10)	H(1D)-N(1)-H(1E)	109.5
I(1)-Pb(1)-I(1)#1	170.513(17)	C(3)-C(2)-C(1)	112.2(5)
I(2)-Pb(1)-I(2)#2	83.271(8)	C(3)-C(2)-H(2A)	109.2
I(3)-Pb(1)-I(2)#2	176.404(16)	C(1)-C(2)-H(2A)	109.2
I(1)-Pb(1)-I(2)#2	89.779(10)	C(3)-C(2)-H(2B)	109.2
I(1)#1-Pb(1)-I(2)#2	89.779(10)	C(1)-C(2)-H(2B)	109.2
I(2)-Pb(1)-I(3)#3	175.830(16)	H(2A)-C(2)-H(2B)	107.9
I(3)-Pb(1)-I(3)#3	82.696(8)	N(1)-C(1)-C(2)	111.6(5)
I(1)-Pb(1)-I(3)#3	85.389(10)	N(1)-C(1)-H(1A)	109.3
I(1)#1-Pb(1)-I(3)#3	85.389(10)	C(2)-C(1)-H(1A)	109.3
I(2)#2-Pb(1)-I(3)#3	100.899(15)	N(1)-C(1)-H(1B)	109.3
Pb(1)-I(3)-Pb(1)#4	177.59(2)	C(2)-C(1)-H(1B)	109.3
Pb(1)-I(2)-Pb(1)#5	174.64(2)	H(1A)-C(1)-H(1B)	108.0
C(1)-N(1)-H(1C)	109.5	N(2)-C(3)-C(2)	177.0(7)

Table S2.	Bond lengths [A] and angles [deg] for (NC(CH ₂) ₂ NH ₃) ₂ PbI ₄ .	
able 52.	Bond lengths [A] and angles [deg] for (NC(CH ₂) ₂ NH ₃) ₂ PDI ₄ .	

Symmetry transformations used to generate equivalent atoms: #1 x,-y+1/2,z #2 x-1/2,y,-z-1/2 #3 x-1/2,y,-z+1/2 #4 x+1/2,y,-z+1/2 #5 x+1/2,y,-z-1/2

Table S3. Anisotropic displacement parameters for (NC(CH₂)₂NH₃)₂PbI₄.

The anisotropic displacement factor exponent takes the form: -2 pi^2 [h^2 a*^2 U11 + ... + 2 h k a* b* U12]

	U11	U22	U33	U23	U13	U12
Pb(1)	24(1)	26(1)	27(1)	0	0(1)	0
I(3)	27(1)	46(1)	31(1)	0	-7(1)	0
I(2)	29(1)	46(1)	39(1)	0	12(1)	0
I(1)	45(1)	28(1)	34(1)	0(1)	-1(1)	1(1)
N(2)	60(4)	68(4)	40(3)	-7(3)	-14(3)	-22(3)
N(1)	65(4)	69(5)	25(2)	-2(3)	-3(3)	-20(4)
C(2)	54(4)	34(4)	29(3)	2(3)	-4(3)	-21(3)
C(1)	51(4)	37(4)	47(4)	-12(3)	-1(3)	0(3)
C(3)	50(4)	54(5)	18(3)	4(3)	0(3)	8(4)

Table S4. Hydrogen bonds for (NC(CH₂)₂NH₃)₂PbI₄ [A and deg.].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
N(1)-H(1C)N(2)#6	0.89	1.97	2.847(9)	169.2	
N(1)-H(1D)I(1)#4	0.89	2.94	3.630(5)	135.4	
N(1)-H(1E)I(1)#7	0.89	2.88	3.663(6)	147.4	

Symmetry transformations used to generate equivalent atoms:

#1 x,-y+1/2,z #2 x-1/2,y,-z-1/2 #3 x-1/2,y,-z+1/2 #4 x+1/2,y,-z+1/2 #5 x+1/2,y,-z-1/2 #6 -x,-y,-z #7 x+1,y,z

Table S5. Atomic coordinates ($x \ 10^{4}$) and equivalent isotropic displacement parameters (A² x 10³) for (NC(CH₂)₂NH₃)₂PbI₄.

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	х	У	Z	U(eq)
Pb(1)	-3225(1)	2500	-11(1)	26(1)
I(3)	-740(1)	2500	2379(1)	35(1)
I(2)	-665(1)	2500	-2325(1)	38(1)
I(1)	-3471(1)	941(1)	148(1)	36(1)
N(2)	-28(7)	46(3)	-1703(6)	56(2)
N(1)	2477(7)	864(3)	1241(4)	53(2)
C(2)	2131(8)	952(3)	-1257(5)	39(2)
C(1)	1945(8)	1288(3)	102(6)	45(2)
C(3)	904(8)	460(4)	-1509(5)	41(2)

Blue (calculated) - Red (experimental)

checkCIF/PLATON report (publication check) for (NC(CH₂)₂NH₃)₂PbI₄

No syntax er	rors found.	<u>CIF dictionary</u>	
Please wait	while process	Interpreting this report	
Bond precisi	on: C-C	= 0.0090 A	Wavelength=0.71073
Cell:	a=8.6370(4)	b=20.34	16(2) c=9.7847(5)
	alpha=90	beta=90) gamma=90
Temperature:	293 K		
	Calcul	ated	Reported
Volume	1719.5	(2)	1719.5(2)
Space group	P n m	a	Pnma
Hall group	-P 2ac	2n	-P_2ac_2n
Moiety formu	la I4 Pb,	2(C3 H7	N2) I4 Pb, 2(C3 H7 N2)
Sum formula	C6 H14	I4 N4 Pb	C6 H14 I4 N4 Pb
Mr	857.01		857.01
Dx,g cm-3	3.310		3. 311
Ζ	4		4
Mu (mm-1)	16.976	i i	16. 977
F000	1488.0)	1488.0
F000'	1468.3	6	
h,k,lmax	12, 28,	13	12, 28, 13
Nref	2576		2514
Tmin, Tmax	0.133,	0.224	0.089, 0.273
Tmin'	0.008		
Correction m	ethod= AbsCon	r=MULTI-S	CAN
Data complet	eness= Ratio	= 0.976	Theta(max) = 30.020
R(reflection	s) = 0.0332(1)	.675)	wR2(reflections)= 0.0581(2514)
S = 1.024	Npa	r= 75	

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

@Alert level B

<u>PLAT112 ALERT 2 B</u> ADDSYM Detects Additional (Pseudo) Symm. Elem. B <u>PLAT232 ALERT 2 B</u> Hirshfeld Test Diff (M-X) Pb1 --I1 .. 10.19 su

●Alert level C

ABSTY02_ALERT_1_C An _expt1_absorpt_correction_type has been given a literature citation. This should be contained in the without exptl absorpt process details field. Absorption correction given as multi-scan PLAT029 ALERT 3 C diffrn measured fraction theta full Low 0.98 PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Pb1--I2 .. .84 su PLAT232 ALERT 2 C Hirshfeld Test Diff (M-X) Pb1--I3 . 9.76 su PLAT342 ALERT 3 C Low Bond Precision on C-C Bonds (x 1000) Ang 9 PLAT062 ALERT 4 C Rescale T(min) & T(max) by 0.82 PLAT147 ALERT 1 C su on Symmetry Constrained Cell Angle(s)? PLAT194_ALERT_1_C Missing _cell_measurement_reflns_used datum ...? PLAT195_ALERT_1_C Missing _cell_measurement_theta_max datum? PLAT196_ALERT_1_C Missing _cell_measurement_theta_min datum ...? PLAT764 ALERT 4 C Overcomplete CIF Bond List Detected (Rep/Expd)1.20 Ratio

●Alert level G

ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.823 Tmax scaled 0.224 Tmin scaled 0.074 PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature 293K

0 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 11 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 7 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check