10

Supporting Information

Synergistic metal and anion effects on formation of coordination assemblies from N,N'-bis(3pyridylmethyl)naphthalene diimide ligand

Hai-Ying Deng, Jian-Rong He, Mei Pan, Lei Li, and Cheng-Yong Su

Figure S1 X-Ray powder diffraction of complex 2: (a) simulated, and (b) measured.

Figure S2 X-Ray powder diffraction of complex 4: (a) simulated, and (b) measured..

Figure S3 X-Ray powder diffraction of complex 5: (a) simulated, and (b) measured.

Electronic Supplementary Material for CrystEngComm This journal is (c) The Royal Society of Chemistry 2009

Figure S4 TG curves of complexes 2 (left) and 5 (right).

10

5

Figure S5 Emission specta of the ligand (a), complexes 1 (b) and 4 (c) excited at 447 nm.

Electronic Supplementary Material for CrystEngComm This journal is (c) The Royal Society of Chemistry 2009

Complex 1			
$C_1(1)$ $N_1(1)$	2 212(7)	N(1) = C I(1) I(1)	105 2(2)
Cd(1)-N(1)	2.313(7)	N(1)-Cd(1)-I(1)	105.2(2)
$Cd(1)-N(4)^{*}$	2.309(6)	$N(4)^{*}$ -Cd(1)-I(1)	103.0(2)
Cd(1)-I(1)	2.708(1)	N(1)-Cd(1)-I(2)	99.5(2)
Cd(1)-I(2)	2.712(1)	$N(4)^{a}$ -Cd(1)-I(2)	102.1(2)
		I(1)-Cd(1)-I(2)	134.6(3)
		N(1)-Cd(1)-N(4)	112.0(2)
Complex 2			112.0(2)
$U_{r}(1) C(1)$	2.250(2)	$C_{1}(1)$ H ₂ (1) N(1)	101((2))
$H_{g(1)} - CI(1)$	2.559(5)	CI(1) - Hg(1) - IN(1)	101.0(3)
Hg(1)-CI(3)	2.359(3)	CI(1)-Hg(1)-N(1)	96.3(3)
Hg(1)-N(1)	2.422(11)	CI(1)-Hg(1)-N(1)	101.6(3)
Hg(1)-N(1)	2.422(11)	N(1)-Hg(1)-N(1)	93.4(5)
		Cl(1)-Hg(1)-Cl(1)	153.9(2)
Complex 3			
$Zn(1) - N(5)^{a}$	2.074(2)	$N(5)^{a}$ -Zn(1)-N(5)	180.0(1)
Zn(1)-N(5)	2.074(2)	$N(1)^{a} - Zn(1) - N(1)$	180.0(1)
Zn(1) - N(3) $Zn(1) N(1)^{a}$	2.074(2)	$N(5)^{a} Zn(1) N(1)^{b}$	80.5(1)
$Z_{II}(1) - IN(1)$	2.229(2)	$N(5)^{2} - Z_{11}(1) - N(1)^{2}$	89.3(1)
Zn(1)-N(1)	2.229(2)	$N(5)^{-2}Zn(1)-N(1)^{-2}$	89.5(1)
$Zn(1)-N(4)^{\circ}$	2.258(2)	$N(5)^{a}-Zn(1)-N(4)^{c}$	89.7(1)
$Zn(1)-N(4)^{c}$	2.258(2)	$N(5)^{a}$ -Zn(1)-N(1) ^c	90.5(1)
		N(1)-Zn(1)-N(4)	93.6(1)
		N(4)-Zn(1)-N(5)	89.7(1)
		$N(4)^{b}-Zn(1)-N(4)^{c}$	$180 \hat{0}(1)$
Complex 4			100.0(1)
$Cd(1) N(1)^a$	2 205(2)	$O(6)^{a}$ Cd(1) O(6)	180.0(1)
$C_{1}(1) = N(1)$	2.393(2)	$N(1)^{a}$ C4(1) N(2)	100.0(1)
Cd(1)- $N(1)$	2.395(2)	N(1) - Cd(1) - N(3)	87.5(1)
$Cd(1)-O(6)^{a}$	2.334(2)	N(1)-Cd(1)-N(3)	92.7(1)
Cd(1)-O(6)	2.334(2)	$O(6)^{a}$ -Cd(1)-N(1)	96.0(1)
Cd(1)-N(3)	2.308(2)	O(6)-Cd(1)-N(1)	84.0(1)
$Cd(1)-N(3)^{a}$	2.308(2)	$N(1)^{a}-Cd(1)-N(3)^{a}$	92.7(1)
		$N(1)-Cd(1)-N(3)^{a}$	87.3(1)
		$N(1)-Cd(1)-N(1)^{a}$	1800(1)
		$N(3)^{a} - Cd(1) - N(3)$	180.0(1)
		$N(2)^{a} Cd(1) O(6)^{a}$	820(1)
		N(3) - Cu(1) - O(0)	82.9(1) 07.2(1)
a 1 -		$N(3)-Cd(1)-O(6)^{-1}$	97.2(1)
Complex 5			
Co(1)-N(1)	2.146(3)	N(1)-Co(1)-O(5)	87.0(1)
$Co(1)-N(4)^{a}$	2.158(3)	$N(4)^{a}$ -Co(1)-O(5)	93.0(1)
Co(1)-N(5)	2.164(3)	N(5)-Co(1)-O(5)	86.0(1)
Co(1)-O(11)	2.191(3)	O(11)-Co(1)-O(5)	170.8(1)
$C_0(1) - O(5)$	2 194(4)	$N(1)-C_0(1)-O(9)$	142.2(1)
$C_0(1) = O(9)$	2.197(3)	$N(4)^{a} - C_{0}(1) - O(9)$	91.3(1)
$C_0(1) - O(5)$	2.177(5)	$N(5) C_{2}(1) O(0)$	91.3(1)
CO(1)-O(0)	2.287(3)	N(3)-C0(1)-O(9)	03.0(1)
		O(11)-Co(1)-O(9)	58.1(1)
		O(5)-Co(1)-O(9)	130.0(1)
		N(1)-Co(1)-O(6)	142.5(2)
		$N(4)^{a}$ -Co(1)-O(6)	81.9(2)
		N(5)-Co(1)-O(6)	93.8(1)
		O(11)-Co(1)-O(6)	132.7(1)
		$O(5) - C_0(1) - O(6)$	56.2 (2)
		$O(9)$ - $C_0(1)$ - $O(6)$	75 2(2)
		$N(1) - C_0(1) N(4)^a$	0/2(1)
		$N(1) C_0(1) N(4)$	00.2(1)
		N(1) = CO(1) = N(3) $N(4)^{a} C_{a}(1) = N(5)$	70.3(1)
		N(4) - CO(1) - N(5)	1/5.3(1)
		N(1)-Co(1)-O(11)	84.4(1)
		$N(4)^{a}$ -Co(1)-O(11)	91.1(1)
		N(5)-Co(1)-O(11)	90.6(1)

Table S1 Selected bond distances (Å) and angles (°) for complexes 1-5.

^{*a*} Symmetry transformations used to generate equivalent atoms: 1: a, -x, -y+1, -z+1; 3: a, -x+1, -y, -z+1; b, -x, y-1/2, -z+1/2; c, x+1, -y+1/2, z+1/2; d, -x, y+1/2, -z+1/2; 4: a, -x+2, -y+1, -z+1; 5: a, -x+2, y-1/2, -z+3/2