The first observation of Na2TiS2 related structure in a two-

dimensional anionic manganese trimesate intercalated by

cationic imidazole

Partha Mahata and Srinivasan Natarajan*

ELECTRONIC SUPPLEMENTARY INFORMATION

^{*} Corresponding Authors, E-mail: snatarajan@sscu.iisc.ernet.in

Empirical formula	[HImd][Mn(BTC)(H ₂ O)]
Formula weight	349.16
Crustel gratem	Manaalinia
Crystal system	Monochine
Space group	$P2_1/c$ (no.14)
a (Å)	6.491(2)
b (Å)	9.599(3)
c (Å)	19.397(6)
α (deg)	90.0
β (deg)	96.001(5)
γ(deg)	90.0
Volume (Å ³)	1202.0(7)
Ζ	4
Т (К)	293(2)
$\rho_{calc} (g \text{ cm}^{-3})$	1.929
μ (mm ⁻¹)	1.142
θ range (deg)	2.11 to 28.04
λ (Mo Ka) (Å)	0.71073
R indices $[I>2\sigma(I)]$	$R_1 = 0.0274, wR_2 = 0.0745$
R indices (all data)	$R_1 = 0.0302, wR_2 = 0.0763$

Table S1: Crystal data and structure refinement parameters for [HImd][Mn(BTC)(H₂O)]

 $\mathbf{R}_{1} = \Sigma ||F_{0}| - |F_{c}|| / \Sigma ||F_{0}|; \quad \mathbf{w}\mathbf{R}_{2} = \{\Sigma[\mathbf{w}(F_{0}^{2} - F_{c}^{2})^{2}] / \Sigma[\mathbf{w}(F_{0}^{2})^{2}]\}^{1/2}. \quad \mathbf{w} = 1/[\sigma^{2}(F_{0})^{2} + (\mathbf{a}\mathbf{P})^{2} + \mathbf{b}\mathbf{P}], \quad \mathbf{P} = 1/[\sigma^{2}(F_{0})^{2} + (\mathbf{a}\mathbf{P})^{2} + (\mathbf{a}\mathbf{P})^{2} + \mathbf{b}\mathbf{P}], \quad \mathbf{P} = 1/[\sigma^{2}(F_{0})^{2} + (\mathbf{a}\mathbf{P})^{2} + (\mathbf{a}\mathbf{P})^{2$

 $[\max(F_0^2, 0) + 2(F_c)^2]/3$, where a = 0.0448 and b = 0.4110.

Bond	Amplitude	Bond	Amplitude
Mn(1)-O(1)#1	2.0941(13)	Mn(1)-O(4)	2.2419(14)
Mn(1)-O(2)#2	2.1457(11)	Mn(1)-O(5)#3	2.2490(13)
Mn(1)-O(3)	2.1720(13)	Mn(1)-O(6)	2.4868(13)

Table S2:	Selected bond	distances (Å) observed in	[HImd][Mn($(BTC)(H_2O)]$
-----------	---------------	--------------	---------------	------------	----------------

Symmetry transformations used to generate equivalent atoms:

#1 -x,y-1/2,-z+1/2 #2 x,-y+1/2,z-1/2 #3 -x,y+1/2,-z+1/2

Angle	Amplitude	Angle	Amplitude
O(1)#1-Mn(1)-O(2)#2	123.44(5)	O(2)#2-Mn(1)-O(3)	144.93(4)
O(1)#1-Mn(1)-O(3)	91.48(5)	O(1)#1-Mn(1)-O(4)	92.43(6)
O(2)#2-Mn(1)-O(4)	86.88(5)	O(3)-Mn(1)-O(4)	88.59(5)
O(1)#1-Mn(1)-O(5)#3	86.04(5)	O(2)#2-Mn(1)-O(5)#3	87.48(4)
O(3)-Mn(1)-O(5)#3	99.21(4)	O(4)-Mn(1)-O(5)#3	172.08(4)
O(1)#1-Mn(1)-O(6)	145.38(4)	O(2)#2-Mn(1)-O(6)	90.40(4)
O(3)-Mn(1)-O(6)	55.70(5)	O(4)-Mn(1)-O(6)	96.94(5)
O(5)#3-Mn(1)-O(6)	88.66(4)		

Table S3. Selected bond angles observed in [HImd][Mn(BTC)(H₂O)]

Symmetry transformations used to generate equivalent atoms:

#1 -x,y-1/2,-z+1/2

#2 x,-y+1/2,z-1/2 #3 -x,y+1/2,-z+1/2

Fig. S1: The asymmetric unit of I. Thermal ellipsoids are given at 50% of the probability.

Fig. S2: Figure shows the connectivity of the trimesate anion with Mn^{+2} ions in I.

Fig. S3: Figure shows the structure of two layers with inter-layer protonated imidazole molecules and the hydrogen bond interaction between coordinated water molecules and oxygen atom of the carboxylate groups.

Fig. S4: Figure shows the hydrogen bond interactions between the protonated imidazole molecules and the carboxylate oxygens of the layer.

Fig. S5: Figure shows the $\pi...\pi$ interactions between imidazole rings and the benzene rings of the two-dimensional layers.

Fig. S6: (a) Figure shows that each Mn_2 dimer is connected six different trimesate anions in I; (b) Figure shows that each trimesate anion is connected with three different Mn_2 dimers in I.

Fig. S7: (a) The asymmetric unit of $[Mn(HBTC)(Pyphen)(H_2O)]$ (Pyphen = pyrazino[2,3-f][1,10]-phenanthroline) (Ref. 14); (b) Figure shows the connectivity of HBTC anion with the Mn⁺² ions in $[Mn(HBTC)(Pyphen)(H_2O)]$ (Pyphen = pyrazino[2,3-f][1,10]-phenanthroline) (Ref. 14).

Fig. S8: The polyhedral view of the two-dimensional layer of $[Mn(HBTC)(Pyphen)(H_2O)]$ (Pyphen = pyrazino[2,3-f][1,10]phenanthroline) (Ref. 14).

Fig. S9: Schematic representation of the connectivity between the 3-connected Mn^{+2} ions and the 3-connected HBTC anions in[Mn(HBTC)(Pyphen)(H₂O)] (Pyphen = pyrazino[2,3-f][1,10]-phenanthroline) (Ref. 14).

Fig. S10: TGA studies of I.

Fig. S11: (i) Powder XRD (CuK α) pattern of **I**, (a) simulated and (b) experimental; (ii) Expanded version of (i) in the range of 5-15°; (iii) Expanded version of (i) in the range 15-50°.

Fig. S12: IR spectra of I.

Fig. S13: The temperature variation of the inverse molar susceptibility $(1/\chi_M)$ for I with Curie-Weiss fit (H = 0.1 T).