Molecular bricklaying II. Anion and chain length effects in bisbenzimidazolonium salts.

Simon Verdan, ^a Xavier Melich,^a Gérald Bernardinelli,^b and Alan F. Williams^{a*}

Supplementary material

Details of X-ray crystal structure determinations	p.2
Details of hydrogen bonding	p.3-4
Details of stacking	p.5
Thermal ellipsoids plots showing atom numbering	p.6-10

Details of X-ray crystal structure determinations.

 $2Br_2.4H_2O$. The hydrogens of the cation were observed and refined isotropically. The hydrogens of water molecules were refined with restraints on bond lengths and bond angles.

 $2I_2$. 4 EtOH. The hydrogens of the cation were observed and refined isotropically. The OH hydrogens of the ethanol molecules were observed and refined isotropically. The other ethanol hydrogens were calculated. The second ethanol molecule showed disorder for the central atom which was refined with two sites with occupation of 0.65 and 0.35 respectively.

 $2(SO_4).5H_2O$. The N-H hydrogens were observed and refined. The hydrogens of water molecules were refined with restraints on bond lengths and bond angles. Other hydrogens were calculated.

 $2[Au(CN)_2]_2$. The N-H hydrogens were observed and refined with restraints on bond distances. Other hydrogens were calculated.

4Cl₂.2H₂O The hydrogens were observed and refined isotropically.

4[CoCl₄].2EtOH The hydrogens of the cation and the OHb hydrogens were observed and refined with U_{iso} fixed at 0.05 Å². The two ethanol molecules are disordered. For molecule a a common position for C1 was fixed and occupation of 0.7 and 0.3 for the two sites. For molecule b a common position for the oxygen was fixed with equal populations of the two orientations. The hydrogens of the ethanol molecules were refined with restraints on bond lengths and bond angles and fixed at the end of the refinement.

5Cl_{2.2}H₂O. The hydrogens were observed and refined with U_{iso} fixed at 0.04 Å².

6Cl₂. The hydrogens were observed and refined with U_{iso} fixed at 0.04 Å².

 $6SO_4.H_2O$. The hydrogens of water molecules were refined with restraints on bond lengths and bond angles. Other hydrogens were calculated.

 $7Cl_2.3MeOH$. The hydrogens of the methyl groups and the non-disordered methanol were refined with restraints on bond lengths and bond angles and fixed at the end of the refinement. The second methanol molecule is disordered about a centre of inversion, and was refined with an occupation of 0.5, without hydrogens. Other hydrogens were calculated.

 $7[CoCl_4].H_2O.$ The hydrogens of the methyl groups were refined with restraints on bond lengths and bond angles and fixed at the end of the refinement. The N-H hydrogens were observed and refined with restraints on bond distances. The hydrogens of water molecules were refined with restraints on bond lengths and bond angles. Other hydrogens were calculated.

Table S1. Data for hydrogen bonds

Donor,D - H	Acceptor, A	D-Н (Å)	HA(Å)	DA(Å) D	9 – H – A (°) Symop.
2 Br ₂ .4H ₂ O						
N1 H01	O2W	0.71(6)	1.98(6)	2.694(6)	179(10)	•
N2 H02	Br1	0.78(6)	2.57(6)	3.313(4)	159(6)	
N3 H03	Br2	0.87(6)	2.39(6)	3.229(4)	164(5)	
N4 H04	O1W	0.74(6)	1.97(6)	2.698(6)	169(7)	x,-1+y,z
O1W H11W	Br2	0.92(4)	2.46(5)	3.332(4)	159(4)	-1+x, v, z
01W H12W	O3W	0.93(5)	1.84(5)	2.755(6)	170(4)	x,1+v,z
02W H21W	04W	0.94(4)	1.85(5)	2.754(6)	162(4)	, ,,
O3W H31W	Br1	0 96(5)	2 47(4)	3 365(5)	155(4)	1-x -v 1-z
O3W H32W	Br1	0.97(5)	2 36(5)	3 331 (5)	178(6)	-1+x y z
04W H41W	Br2	0.94(4)	2.33(3)	3 368 (5)	179(5)	-1+x y z
O4W H42W	Br2	0.94(5)	2.54(4)	3.425(5)	156(4)	1-x,1-y,-z
						-
2 I ₂ . 4 EtOH						
N1 H01	01B	0.80(6)	1.91(6)	2.697(6)	167(6)	•
N2 H02	01A	0.82(5)	1.88(4)	2.696(5)	171(5)	2-x,1-y,1-z
01A H01A	I	0.97(4)	2.52(4)	3.481(4)	171(4)	•
01B H01B	I	0.98(3)	2.50(3)	3.465(5)	170(3)	•
$2(SO_4).5H_2O$						
N1A H01A	03	0.90(3)	1.86(3)	2.754(3)	169(3)	•
N2A H02A	O1W	0.93(3)	1.80(3)	2.728(3)	176(3)	-x,-y,-z
N1B H01B	O2W	0.87(3)	1.84(3)	2.696(3)	168(3)	1-x,-y,1-z
N2B H02B	01	0.90(3)	1.81(3)	2.705(3)	175(3)	•
O1W H11W	O3W	0.85(3)	1.89(3)	2.679(4)	153(3)	-1+x,y,z
O1W H12W	02	0.85(2)	1.91(2)	2.752(3)	171(3)	•
O2W H21W	02	0.86(3)	2.02(3)	2.849(3)	160(3)	•
O2W H22W	O5W	0.85(2)	1.83(2)	2.671(4)	172(2)	x,-1+y,z
O3W H31W	03	0.81(2)	2.04(2)	2.816(4)	161(2)	1+x,y,z
O3W H32W	04	0.84(3)	1.86(3)	2.690(4)	173(3)	•
O4W H41W	O1W	0.83(3)	2.08(3)	2.874(3)	159(3)	1+x,1+y,z
O4W H42W	01	0.84(3)	2.00(3)	2.814(4)	163(3)	
O5W H51W	03	0.82(3)	2.18(3)	2.925(4)	151(3)	
O5W H52W	O4W	0.80(3)	1.98(3)	2.751(5)	162(3)	-1+x,y,z
C2B H2B	O3W	0.98	2.56	3.510(4)	164	1-x,-y,1-z
C5A H5A	04	0.98	2.46	3.159(4)	128	1-x,1-y,-z
C5B H5B	02	0.98	2.47	3.283(3)	140	•
$2[Au(CN)_2]_2$						
N1 H01	N01	0.94(6)	1.86(5)	2.798(7)	173(6)	1+x, y, z
N2 H02	N02	0.92(6)	1.92(6)	2.778(7)	153(6)	-1+x, -1+y, z
$4CI_2.2H_2O$	_					
N1 H01	Cl	0.87(3)	2.29(3)	3.1250(17)	162(2)	1-x,-1-y,1-z
N2 H02	O1W	0.90(3)	1.90(3)	2.754(2)	159(3)	•
01W H11W	Cl	0.80(3)	2.38(3)	3.1752(18)	173(3)	x,y,1+z
01W H12W	Cl	0.80(3)	2.37(3)	3.170(2)	175(3)	-x,-y,1-z
4[CoCL] 2E+	ЛЦ					
		0 00 (4)	2 22 (4)	2 14E(2)	170 (C)	
ND HUT	CIZ	$\cup \cdot \forall \angle (4)$	2.33(4)	3.145(3)	1/9(6)	•
MZ = -HUZ	UIA	0.76(4)	2.06(4)	∠./yb(b)	104(5)	x, 3/2 - y, -1/2 + Z
NO HU3	CI3	0.86(4)	$\angle . / \bot (4)$	3.332(3)	13U(3)	$-x, \perp/2+y, 3/2-z$
N3 H03	C14	0.86(4)	$\angle . / \bot (4)$	3.421(3)	141(4)	-x, 1/2+y, 3/2-z
N4 HU4	· · OIR	0.85(4)	1.85(4)	$\angle .692(4)$	1/3(5)	x, 3/2-y, -1/2+z
OIR H01B	C14	0.79(4)	2.37(4)	3.148(4)	169(4)	-x,1/2+y,3/2-z
CIB H12B	CI3	0.98	2.68	3.647(10)	169 169	•
св H82	CI5	0.9/(4)	∠./∪(4)	3.664(5)	⊥/3(3)	•

5Cl ₂	2H	$_2O$							
Nl		H01		OlW	0.82(3)	1.93(3)	2.754(2)	175(3)	•
OlW		H1W	••	Cl	0.85(3)	2.37(3)	3.2048(19)	170(3)	1-x,y,3/2-z
N2		H02	••	Cl	0.90(2)	2.18(2)	3.0662(18)	171.8(19)	-1/2+x,1/2+y,z
01₩		H2W	• •	Cl	0.80(3)	2.43(3)	3.2190(19)	172(3)	•
6Cl2									
N1		H01		Cl	0.79(2)	2.39(2)	3.113(2)	153(2)	1/2+x,1/2-y,1-z
N2		H02	• •	Cl	0.77(3)	2.31(3)	3.068(2)	173(3)	1/2+x,y,1/2-z
6SO	₄.H;	\mathbf{O}							
N1		H01		04	0.98	1.74	2.692(3)	164	3/2-x,1/2+y,3/2-z
N2		H02		01	0.98	2.59	3.316(3)	131	•
N2		H02		02	0.98	1.74	2.698(3)	166	
N3		H03		01	0.98	1.70	2.670(3)	170	-1/2+x,3/2-y,-
1/2+	Z								
N4		H04		03	0.98	1.74	2.684(3)	162	2-x,1-y,1-z
OlW		H01W	••	04	1.00(2)	1.82(2)	2.811(4)	170(2)	
OlW		H02W	••	01	0.996(17)	2.38(2)	3.114(5)	130(3)	2-x,1-y,1-z
OlW		H02W	••	04	0.996(17)	2.12(2)	3.081(4)	162(3)	2-x,1-y,1-z
C16		H16	• •	OlW	0.98	2.41	3.274(5)	146	3/2-x,1/2+y,1/2-z
C8		H82	••	01	0.98	2.58	3.234(4)	124	•
C13		H132	• •	OlW	0.98	2.27	3.092(6)	141	2-x,1-y,1-z
7 Cl ₂	.3M	leOH							
N2		H02	••	0101	0.98	1.77	2.729(3)	166	1-x,1-y,1-z
0101		H0101	•••	Cl	0.95	2.08	3.015(2)	166	x,3/2-y,-1/2+z
C11		H111	••	Cl	0.98	2.74	3.688(4)	165	1-x,1/2+y,3/2-z
C11		H112	••	0201	0.98	2.49	3.264(7)	136	1-x,2-y,1-z
7 [Co	Cl ₄].H ₂ O							
N2A		H02A		Cl1	0.94(2)	2.26(2)	3.139(2)	156(2)	1-x,1-y,1-z
N2B		H02B		OlW	0.93(3)	1.83(3)	2.755(3)	176(2)	1-x,1-y,1-z
OlW		H12W	••	C13	0.86(3)	2.34(3)	3.198(3)	174(2)	1-x,-y,1-z
C8B		H81B	••	C12	0.98	2.77	3.697(3)	158	1-x,-y,1-z
C8A		H82A	• •	Cl4	0.98	2.78	3.705(3)	158	x,1+y,-1+z

Electronic Supplementary Material for CrystEngComm This journal is (c) The Royal Society of Chemistry 2009 Table S2. Details of stacking interactions.

	Interplane	Interplane			
	distance, d (Å)	angle (°)	C-C' (Å)	Slip (Å)	torsion (°)
$2Br_2.4H_2O$					
	3.433	0	3.550	0.904	180
	3.350	0	3.648	1.444	180
	3.442	0	3.540	0.827	180
	3.419	0	3.631	1.223	180
$2I_2.4$ EtOH	2 2 2 2	0.04	2 700	1 (25	1.45
	3.333	0.94	3.708	1.625	145
$2(SO_4) 5H_2O_1$					
2(004).01120	3 456	0	3 659	1 202	180
	3 423	0 0	3 607	1 1 3 7	180
	3.454	0	3.667	1.232	180
	3.347	0	3.643	1.438	180
		-			
$4Cl_2.2H_2O$					
	3.482	0	3.656	1.114	180
	3.352	0	3.889	1.972	180
4(CoCl ₄).2EtOH					
	3.367	0	4.450	2.910	180
	3.500	5.75	3.621	0.928	180
	3.400	0	3.513	0.884	180
	3.560	5.75	3.621	0.662	180
5 C1 24 0					
3C12.21120	3 307	0	3 602	1 212	180
	3.392	2 79	3 485	1.212	180
	5.55	2.19	5.405	1.020	100
6 (SO ₄).H ₂ O					
	3.363	4.96	3.404	0.527	167
	3.421	0	3.565	1.003	180
$/(CoCl_4).H_2O$	2 274	0	2.966	2.056	100
	3.2/4	0	3.866	2.056	180

The interplane distance for stacks where the planes are not parallel is taken as the average value of the distances of atoms of one benzimidazole to the least squares plane through the other

Electronic Supplementary Material for CrystEngComm

This journal is (c) The Royal Society of Chemistry 2009

Thermal ellipsoid plots of crystal structures showing atomic numbering. All ellipsoids are drawn at 50% probability.

🚫 Br1

Fig. S1 2Br₂.4H₂O

Electronic Supplementary Material for CrystEngComm This journal is (c) The Royal Society of Chemistry 2009 Fig. S2 2I₂. 4 EtOH. The primed and unprimed atoms are related by a centre of inversion between C8 and C8'

Fig. S3 $2(SO_4).5H_2O$. The primed and unprimed atoms are related by a centre of inversion between C8 and C8'

Fig. S4 $2[Au(CN)_2]_2$. The primed and unprimed atoms are related by a centre of inversion between C8 and C8'

Fig. S5 $4Cl_2.2H_2O$. The primed and unprimed atoms are related by a centre of inversion between C1 and C1'

Fig. S6 4[CoCl₄].2EtOH. The primed and unprimed atoms are related by the operation -x, $\frac{1}{2} + y$, $\frac{3}{2}-z$

Fig. S7 5Cl₂.2H₂O. The primed and unprimed atoms are related by a twofold axis passing through C10.

Fig. S8 $6Cl_2$. The primed and unprimed atoms are related by a centre of inversion between C10 and C10'

Fig. S9 6SO₄.H₂O

Fig. S10 7Cl₂.3MeOH. The primed and unprimed atoms are related by a centre of inversion between C10 and C10'

Fig. S11 7[CoCl₄].H₂O. The two halves of each cation are related by a centre of inversion.