ELECTRONIC SUPPLEMENTARY DATA

for

Spontaneous Resolution of Chiral Metal Mandelates by Stereochemical Control

Hong-Qing Hao, Wei Tan, Wen-Wen Liu, Zhuo-Jia Lin,* and Ming-Liang Tong,*

MOE Laboratory of Bioinorganic and Synthetic Chemistry / State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry & Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China.

*Authors to whom correspondence should be addressed. E-mail: tongml@mail.sysu.edu.cn (M.-L. Tong).

Synthesis

Elemental analysis calcd (%) for **1***R and* **1***S*: C, 61.75; H, 5.00; N, 4.97. Found: C, 61.95; H, 5.03; N, 5.11. IR data (KBr) (400-4000 cm-1): 3438 (m), 3031(m), 2897(w), 2601(m), 1592(s), 1428(w), 1379(s), 1269(m), 1224(w), 1189(w), 1049(s), 1027(m), 949(w), 845(w), 801(w), 749(m), 698(s), 651(w), 597(m), 547(m), 499(w).

Elemental analysis calcd (%) for 2: C, 61.23; H, 4.89; N, 6.80. Found: C, 61.50; H, 5.01; N, 6.77. IR data (KBr) (400-4000 cm-1): 3459(m), 3050(m), 3023(m), 2937(m), 2858(w), 2819(w), 2685(w), 1948(w), 1791(w), 1640(s), 1617(s), 1493(w), 1447(w), 1427(w), 1382(s), 1224(w), 1194(w), 1094(m), 1064(s) 1027(m), 942(w), 806(s), 733(s), 699(s), 619(w), 584(m), 526(m).

Elemental analysis calcd (%) for 3: C, 61.75; H, 5.00; N, 4.97. Found: C, 61.86; H, 5.05; N, 4.95. IR data (KBr) (400-4000 cm-1): 3435 (m), 3029(m), 2901(w), 2603(m), 1590(s), 1428(w), 1375(s), 1267(m), 1222(w), 1185(w), 1046(s), 1024(m), 945(w), 840(w), 810(w), 694(s), 649(w), 602(m), 547(m).

Synthesis of Λ -[Fe(II)(*R*-Hopa)₂(bpp)] **4R** and Δ -[Fe(II)(*S*-Hopa)₂(bpp)] **4S**: NaOH (0.010 g, 0.25 mmol) was added to an water/ethanol solution of *rac*-H₂opa (0.038 g, 0.25 mmol) with stirring. And then bpp (0.025 g 0.125 mmol) and FeCl₂·4H₂O (0.025 g, 0.125 mmol) were added with stirring, the suspension was poured into a 23 ml Teflon reactor, which was heated at 160 °C for 48 hours and then cooled to room temperature at a rate of 5 °C/h. Golden crystals were obtained after washing and drying in air. Yield, 30%. Elemental analysis calcd (%): C, 62.60; H, 5.07; N, 5.03. Found: C, 62.72; H, 4.98; N, 5.12. IR data (KBr) (400-4000 cm⁻¹): 3425(m), 3030(m), 2927(w), 2604(m), 1610(s), 1429(w), 1379(s), 1270(m), 1226(w), 1193(w), 1052(s), 1023(m), 948(w), 800(w), 752(m), 697(s), 655(w), 597(m), 547(m), 499(w).

Synthesis of Λ -[Co(II)(*R*-Hopa)₂(bpp)] **5R** and Δ -[Co(II)(*S*-Hopa)₂(bpp)] **5S**: Similar procedure to that of [Fe(II)(*R*-Hopa)₂(bpp)] was carried out except CoCl₂·6H₂O (0.030 g, 0.125 mmol) was used in place of FeCl₂·4H₂O. Yield, 28%. Elemental analysis calcd (%): C, 62.26; H, 5.04; N, 5.01. Found: C, 62.31; H, 4.97; N, 5.05. IR data (KBr) (400-4000 cm⁻¹): 3436 (m), 3029(m), 2894(w), 2598(m), 1590(s), 1430(w), 1382(s), 1270(m), 1226(w), 1191(w), 1051(s), 1025(m), 947(w), 842(w), 798(w), 751(m), 696(s), 655(w), 596(m), 546(m), 499(w).

Synthesis of Λ -[Ni(II)(*R*-Hopa)₂(bpp)] **6R** and Δ -[Ni(II)(*S*-Hopa)₂(bpp)] **6S**: Compounds were prepared by a similar procedure to that of [Fe(II)(*R*-Hopa)₂(bpp)] except NiCl₂·6H₂O (0.030 g, 0.125 mmol) was used. Yield, 35%. Elemental analysis calcd (%): C, 62.28; H, 5.05; N, 5.01. Found: C, 62.34; H, 5.03; N, 5.09. IR data (KBr) (400-4000 cm⁻¹): 3438 (m), 3031(m), 2897(w), 2601(m), 1592(s), 1428(w), 1379(s), 1269(m), 1224(w), 1189(w), 1049(s), 1027(m), 949(w), 845(w), 801(w), 749(m), 698(s), 651(w), 597(m), 547(m), 499(w).

Synthesis of Λ -[Zn(II)(*R*-Hopa)₂(bpp)] **7R** and Δ -[Zn(II)(*S*-Hopa)₂(bpp)] **7S**:

Method A: complexes were prepared by a similar procedure to that of $[Fe(II)(R-Hopa)_2(bpp)]$ except that $ZnCl_2$ (0.017 g, 0.125 mmol) was used instead. Yield, 45%.

Electronic Supplementary Material for CrystEngComm This journal is (c) The Royal Society of Chemistry 2009

Method B: Ammonia was added to the methanol and water (1:1) solution of $Zn(NO_3)_2 \cdot 6H_2O$ (0.074 g, 0.25 mmol), until the solution was clear. Then *rac*-H₂opa (0.076 g, 0.50 mmol) and bpp (1,3-di(4-pyridyl) propane) (0.050 g 0.25 mmol) were added to the above solution. Diamond-like colorless crystals of **7R** and **7S** were obtained after five days. Yield, 88%. Elemental analysis calcd (%): C, 61.55; H, 4.99; N, 4.95. Found: C, 61.62; H, 4.95; N, 5.04. IR data (KBr) (400-4000 cm⁻¹): 3434 (m), 3028(m), 2893(w), 2599(m), 1592(s), 1430(w), 1383(s), 1271(m), 1226(w), 1191(w), 1054(s), 1025(m), 947(w), 842(w), 799(w), 752(m), 697(s), 656(w), 598(m), 547(m), 499(w).

Crystallographic Data:

Crystal data for **A**-[Fe(II)(*R*-Hopa)₂(bpp)] **4R** (293 K): C₂₉H₂₈O₆N₂Fe, M = 556.38, hexagonal, space group $P6_522$ (no. 179), a = 11.643(1) Å, b = 11.643(1) Å, c = 32.956(7) Å, U = 3869.0(9) Å³, Z = 6, $\rho_{calcd} = 1.433$ g cm⁻³, μ (MoK α) = 0.632 mm⁻¹. A total of 7089 reflections collected, 2746 independent reflections ($R_{int} = 0.0281$) with 2191 ($I > 2\sigma(I)$) observed data. $R_1 = 0.0713$ ($I > 2\sigma(I)$), $wR_2 = 0.1793$ (for all data), Flack parameter x = 0.02(6).

Crystal data for Δ -[Fe(II)(S-Hopa)₂(bpp)] **4S** (150 K): C₂₉H₂₈O₆N₂Fe, M = 556.38, hexagonal, space group $P6_122$ (no. 178), a = 11.565(1) Å, b = 11.565(1) Å, c = 32.789(2) Å, U = 3798.2(5) Å³, Z = 6, $\rho_{calcd} = 1.459$ g cm⁻³, μ (MoK α) = 0.644 mm⁻¹. A total of 9634 reflections collected, 3235 independent reflections ($R_{int} = 0.0341$) with 2125 ($I > 2\sigma(I)$) observed data. $R_1 = 0.0422$ ($I > 2\sigma(I)$), $wR_2 = 0.1107$ (for all data), Flack parameter x = 0.01(3).

Crystal data for *A*-[Co(II)(*R*-Hopa)₂(bpp)] **5R** (293 K): C₂₉H₂₈O₆N₂Co, *M* = 559.46, hexagonal, space group *P*6₅22 (no. 179), *a* = 11.595 (2) Å, *b* = 11.595 (2) Å, *c* = 33.068 (9) Å, *U* = 3850 (1) Å³, *Z* = 6, $\rho\chi_{alcd}$ = 1.448 g cm⁻³, μ (MoK α) = 0.716 mm⁻¹. A total of 7061 reflections collected, 2563 independent reflections (*R*_{int} = 0.0655) with 1746 (*I* > 2 σ (*I*)) observed data. *R*₁ = 0.1025 (*I* > 2 σ (*I*)), *wR*₂ = 0.2551 (for all data), Flack parameter *x* = 0.11(8).

Crystal data for Δ -[Co(II)(*S*-Hopa)₂(bpp)] **5S** (293 K): C₂₉H₂₈O₆N₂Co, M = 559.46, hexagonal, space group $P6_122$ (no. 178), a = 11.583 (2) Å, b = 11.583 (2) Å, c = 33.05(1) Å, U = 3841(1) Å³, Z = 6, $\rho_{calcd} = 1.451$ g cm⁻³, μ (MoK α) = 0.718 mm⁻¹. A total of 6403 reflections collected, 2359 independent reflections ($R_{int} = 0.0609$) with 1534 ($I > 2\sigma(I)$) observed data. $R_1 = 0.0537$ ($I > 2\sigma(I)$), $wR_2 = 0.1282$ (for all data), Flack parameter x = 0.00(4).

Crystal data for Λ -[Ni(II)(*R*-Hopa)₂(bpp)] **6R** (293 K): C₂₉H₂₈O₆N₂Ni, M = 559.24, hexagonal, space group *P*6₅22 (no. 179), a = 11.518(1) Å, b = 11.518(1) Å, c = 33.162(4) Å, U = 3809.6(6) Å³, Z = 6, $\rho_{calcd} = 1.463$ g cm⁻³, μ (MoK α) = 0.812 mm⁻¹. A total of 9642 reflections collected, 2315 independent reflections ($R_{int} = 0.0472$) with 1999 ($I > 2\sigma(I)$) observed data. $R_1 = 0.0854$ ($I > 2\sigma(I)$), $wR_2 = 0.2066$ (for all data), Flack parameter x = 0.04(6).

Crystal data for Δ -[Ni(II)(*S*-Hopa)₂(bpp)] **6S** (150 K): C₂₉H₂₈O₆N₂Ni, M = 559.24, hexagonal, space group $P6_122$ (no. 178), a = 11.4711(1) Å, b = 11.4711(1) Å, c = 33.0791(4) Å, U = 3769.59(7) Å³, Z = 6, $\rho_{calcd} = 1.478$ g cm⁻³, μ (MoK α) = 1.521 mm⁻¹. A total of 9433 reflections collected, 1814 independent reflections ($R_{int} = 0.0296$) with 1343 ($I > 2\sigma(I)$) observed data. $R_1 = 0.0280$ ($I > 2\sigma(I)$), $wR_2 = 0.0506$ (for all data), Flack parameter x = -0.01(4).

Electronic Supplementary Material for CrystEngComm This journal is (c) The Royal Society of Chemistry 2009

Crystal data for Λ -[Zn(II)(*R*-Hopa)₂(bpp)] **7R** (150 K): C₂₉H₂₈O₆N₂Zn, M = 565.90, hexagonal, space group $P6_522$ (no. 179), a = 11.595 (2) Å, b = 11.595 (2) Å, c = 33.068 (9) Å, U = 3850 (1) Å³, Z = 6, $\rho_{calcd} = 1.464$ g cm⁻³, μ (MoK α) = 1.004 mm⁻¹. A total of 10870 reflections collected, 2949 independent reflections ($R_{int} = 0.0374$) with 2066 ($I > 2\sigma(I)$) observed data. $R_1 = 0.0662$ ($I > 2\sigma(I)$), $wR_2 = 0.1712$ (for all data), Flack parameter x = 0.00 (5).

Crystal data for Δ -[Zn(II)(S-Hopa)₂(bpp)] **7S** (293 K): C₂₉H₂₈O₆N₂Zn, M = 565.90, hexagonal, space group $P6_122$ (no. 178), a = 11.606 (1) Å, b = 11.606 (1) Å, c = 33.043 (5) Å, U = 3854.3(8) Å³, Z = 6, $\rho_{calcd} = 1.463$ g cm⁻³, μ (MoK α) = 1.003 mm⁻¹. A total of 10274 reflections collected, 2816 independent reflections ($R_{int} = 0.0412$) with 2165 ($I > 2\sigma(I)$) observed data. $R_1 = 0.0506$ ($I > 2\sigma(I)$), $wR_2 = 0.1196$ (for all data), Flack parameter x = 0.02 (2).

Fig. S1 Simulated (black line) and experimental (red line) powder XRD patterns of $[Cu(R-Hopa)_2(bpp)]_n$ **1R** and $[Cu(S-Hopa)_2(bpp)]_n$ **1S**.

Fig. S2 Simulated (black line) and experimental (red line) powder XRD patterns of [Cu(rac-Hopa)₂(bpp)]_n 2.

Fig. S3 Simulated (black line) and experimental (red line) powder XRD patterns of [Cu₂(rac-opa)₂(bpp)]_n 3.

Fig. S4 Simulated (black line) and experimental (red line) powder XRD patterns of $[Fe(R-Hopa)_2(bpp)]_n$ **4R** and $[Fe(S-Hopa)_2(bpp)]_n$ **4S**.

Electronic Supplementary Material for CrystEngComm This journal is (c) The Royal Society of Chemistry 2009

Fig. S5 Simulated (black line) and experimental (red line) powder XRD patterns of $[Co(R-Hopa)_2(bpp)]_n$ (**5R**) and $[Co(S-Hopa)_2(bpp)]_n$ (**5S**).

Fig. S6 Simulated (black line) and experimental (red line) powder XRD patterns of $[Ni(R-Hopa)_2(bpp)]_n$ (**6R**) and $[Ni(S-Hopa)_2(bpp)]_n$ (**6S**).

Fig. S7 Simulated (black line) and experimental (red line) powder XRD patterns of $[Zn(R-Hopa)_2(bpp)]_n$ (**7R**) and $[Zn(S-Hopa)_2(bpp)]_n$ (**7S**).

	M-O1 (<i>a</i> -OH)	M-O2 (COO)	M-N (bpp)
2 (SP)	1.924(3)	1.941(3)	1.999(3)
	1.945(3)		2.323(4)
3 (Oh)	2.312(5)	1.951(4)	2.027(6)
	2.315(5)	1.968(4)	2.033(6)

Table S1. Bond distances of the metal ions in racemic compounds of [Cu(rac-opa)(bpp)] 2 and [Cu(rac-Hopa)₂(bpp)] 3

Table S2 Bond distances of the metal ions in the octahedral geometry for the chiral compounds of $[M(Hopa)_2(bpp)]_n$

	M-O1 (α-OH)	M-O2 (COO)	M-N (bpp)
1R (Cu)	2.131(4)	1.983(3)	2.148(5)
1S (Cu)	2.134(3)	1.981(3)	2.166(8) ^[a]
4R (Fe)	2.165(2)	2.061(2)	2.174(3)
4S (Fe)	2.156(2)	2.056(2)	2.162(7) ^[a]
5R (Co)	2.113(3)	2.049(3)	2.128(4)
5S (Co)	2.117(3)	2.042(3)	2.107(15) ^[a]
6R (Ni)	2.059(3)	2.043(3)	2.080(4)
6S (Ni)	2.054(2)	2.032(1)	2.066(12) ^[a]
7R (Zn)	2.131(3)	2.066(2)	2.138(3)
7S (Zn)	2.142(3)	2.052(2)	2.130(14) ^[a]

[a] bpp is disordered at two positions in all S-Mandelate compounds. Here the average distances are considered.