Supplementary Material (ESI) for CrystEngComm

Organic hydrogen-bonded interpenetrating diamondoid frameworks from modular self-assembly of methanetetrabenzoic acid with linkers

Yong-biao Men,^a Junliang Sun,^b Zhi-Tang Huang^a and Qi-Yu Zheng^{*a}

 ^a Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
 ^b Structural Chemistry and Berzelii Centre EXSELENT on Porous Materials, Stockholm University, S-106 91 Stockholm, Sweden.

Electronic Supplementary Information

- 1. Experimental section
- 2. The result of interpenetrating modes analyzed by TOPOS
- 3. Figure S1-S3

1. Experimental section

Preparation of [H₄MTB.phenazine].

A mixture of Methanetetrabenzoic acid (H₄MTB) (14.9mg, 0.03mmol) and phenazine (10.8mg, 0.06mmol) was dissolved in THF/MeOH (v/v=1:2, 30mL). The resultant yellow solution was filtered and left to stand at room temperature. Upon slow evaporation of the solvents, cubic light yellow crystals single crystals suitable for X-ray diffraction were produced over a period of two weeks.

Preparation of [H₄MTB.bipy].

The similar synthetic procedure as for [H₄MTB.phenazine] was used. H₄MTB (14.9mg, 0.03mmol) and 4,4'-bipyridine (bipy) (9.4mg, 0.06mmol) were mixed in THF/MeOH (v/v=1:2, 30mL). The resultant colorless solution was filtered and allowed to crystallize at room temperature. Rectangular shaped colorless crystals single crystals suitable for X-ray diffraction appeared after three weeks.

2. The result of interpenetrating modes analyzed by TOPOS

[H₄MTB.phenazine]:

2:C41 H28 N2 O8

Topology for C1

Atom C1 links by bridge ligands and has

Co	mmo	on vertex wi	R(A-A)	f			
С	1	0.0000	1.7114	-0.2500	(020)	15.202A	1
С	1	0.0000	1.7114	0.7500	(021)	15.202A	1
С	1	0.5000	-1.7886	0.7500	(0-20)	21.024A	1
С	1	-0.5000	-1.7886	-0.2500	(-1-2-1)	21.024A	1

Structural group analysis

Structural group No 1

Structure consists of 3D framework with O8N2C41H28

There are 7 interpenetrating nets

FIV: Full interpenetration vectors

[0,1,0] (8.64A)

PIC: [7/2,7/2,0][0,0,1][1,0,1] (PICVR=7)

Zt=7; Zn=1

Class Ia Z=7

Coordination sequences

 C1:
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

 Num
 4
 12
 24
 42
 64
 92
 124
 162
 204
 252

 Cum
 5
 17
 41
 83
 147
 239
 363
 525
 729
 981

TD10=981

Vertex symbols for selected sublattice

C1 Schlafli symbol:{6^6} With circuits:[6(2).6(2).6(2).6(2).6(2).6(2)]

Total Schlafli symbol: {6⁶}

4-c net; uninodal net

Topological type: dia Diamond; 4/6/c1; sqc6 {6^6} - VS [6(2).6(2).6(2).6(2).6(2).6(2)] (66822 types in 8 databases) Elapsed time: 3.44 sec.

[H₄MTB.bipy]:

As mentioned in the text, for the topology analysis, we keep here the linkers which is Ti below and Sc is the C_1 in the cif file. We keep this 2-coordinated linkers otherwise some bonds will cross with each other.

2:C49 H36 N4 O8 with 2connection

Topology for Sc1

Atom Sc1 links by bridge ligands and has

Comn	non vertex v	R(A-A)									
Ti 1	-0.2500	0.5092	0.0000	(010)	12.360A	1					
Ti 1	0.2408	-0.5000	0.2500	(-1-1 0)	12.360A	1					
Ti 1	0.7592	1.0000	0.2500	(110)	12.360A	1					
Ti 1	1.2500	-0.0092	0.0000	(1-10)	12.360A	1					
Topology for Til											
Atom	Ti1 links by	y bridge liga	nds and has	;							
Comn	non vertex v	R(A-A)									
Sc 1	1.0000	1.2500	-0.1250	(110)	12.360A	1					
Sc 1	-0.5000	1.2500	0.1250	(-1 1 0)	12.360A	1					

Structural group analysis

Structural group No 1

Structure consists of 3D framework with Ti2Sc

There are 18 interpenetrating nets

PIV: Partial interpenetration vectors

[0,1,0] (12.73A) (3 nets [1,2,3])

[1,0,0] (12.73A) (3 nets [1,4,5])

[1,1,0] (18.00A) (3 nets [1,6,7])

```
[1,-1,0] (18.00A) (3 nets [1,8,9])
```

NISE: Non-translating interpenetration symmetry elements

1: -1

PIC: [0,3,0][3/2,3/2,3/2][0,0,1] (PICVR=9)

Zt=9(3*3); Zn=2

Class IIIb Z=18[(3*3)*2]

Coordination sequences

 Sc1:
 1 2
 3
 4
 5
 6
 7
 8
 9
 10

 Num
 4 4 12 12 36 24
 60
 42 108
 64

 Cum
 5 9 21 33 69 93 153 195 303 367

 ----- Ti1:
 1 2
 3
 4
 5
 6
 7
 8
 9
 10

 Num
 2
 3
 4
 5
 6
 7
 8
 9
 10

 Num
 2
 6
 18
 18
 48
 30
 78
 54
 126

 Cum
 3
 9
 15
 33
 51
 99
 129
 207
 261
 387

TD10=380

Vertex symbols for selected sublattice

Sc1 Point (Schlafli) symbol: {12^6} Extended point symbol: [12(2).12(2).12(2).12(2).12(2).12(2)] Rings coincide with circuits All rings (up to 16): coincide with rings All rings with types: [12(2).12(2).12(2).12(2).12(2).12(2)]

Ti1 Point (Schlafli) symbol:{12}

Extended point symbol: [12(6)]

Rings coincide with circuits

All rings (up to 16): coincide with rings

All rings with types: [12(6)]

Point (Schlafli) symbol for net: {12⁶}{12}2

2,4-c net with stoichiometry (2-c)2(4-c); 2-nodal net

3. Figure S1-S3

Fig. S1 Stick view of the hydrogen bonds and the connectivity of the H₄MTB in **[H₄MTB.phenazine]**. Red: O; blue: N; gray: C; white: H.

Fig. S2 Stick view of the hydrogen bonds and the connectivity of the H₄MTB in [H₄MTB.bipy]. Red: O; blue: N; gray: C; white: H.

Fig. S3 Stick view of the bent connectivity of bipy with the H_4MTB in [H_4MTB .bipy]. Red: O; blue:

N; gray: C; white: H.