Supporting Information

Octacalcium phosphate microscopic superstructure self-assembly and evolution by dual-mediating combination

Zhongru Gou^{a*}, Xianyan Yang^a, Xin Gao^a, Xinli Zhang^b, Kang Ting^b, Benjamin Wu^c and Changyou Gao^a

Figure S1. Growth patterns of OCP nanocrystal individuals along the core in the aqueous solution by PASP/CTAB dual-mediating combination (from left to right: *No.* 6, *No.* 7, *No.* 8 and *No.* 9. The optical images confirm a relatively slow process of intergrowth from a core enabling the structure evolution with increasing *R* value, and further the elongated one-dimensional nanoplates have been aligned toward the center of dandelion -like sphere.

Figure S2. FTIR spectra of OCP samples synthesized from a dual-mediating approach in the aqueous solution with different *R* values, in contrast with the pure OCP and CTAB. The spectra exhibited a bending mode of H_2O at 1653cm⁻¹. The adsorption band at 1076 cm⁻¹ can be assigned to the stretching mode of the P–O bond. The shoulders at 960–964 and 1090–1120 cm⁻¹ can be attributed to the presence of PO₄³⁻ and/or HPO₄²⁻ groups. The bands at 601 and 560 cm⁻¹ correspond to bending modes of the O–P–O bonds. The band at 875 cm⁻¹ can be attributed to the P–OH stretch vibration of HPO₄²⁻ ions.