Supporting Information

Interweaving of single-helical and equal double-helical chains with

the same helix axis in a 3D metal-organic framework

Huadong Guo,^a Xianmin Guo,^a Xiao Wang,^a Guanghua Li,^b Zhiyong Guo,^a Shengqun Su^a and Hongjie Zhang^a*

^a State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied

Chemistry, Chinese Academy of Sciences, Changchun 130022; and Graduate School of the

Chinese Academy of Sciences, Beijing 100049, China

^b State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.

*Corresponding author. Fax: +86-431-85698041; Tel: +86-431-85262127.

E-mail address: hongjie@ciac.jl.cn (H.-J. Zhang)

Fig **S1**. Molecular structure of **1** showing the geometry of the Zn^{2+} ions and the coordination mode of $tzba^{2-}$. Hydrogen atoms are omitted for clarity.

Fig **S2**. Schematic description of the $(4 \cdot 6^3 \cdot 8^2)(6^2 \cdot 8^4)(4^2 \cdot 6^4)$ topological net.

Fig S3. View of the connective mode of A with $BB'B_1B'_1B_2B'_2B_3B'_3$ along the *c* aixs.

Electronic Supplementary Material (ESI) for *CrystEngComm* This journal is © The Royal Society of Chemistry 2009

Fig S4. View of the connective mode of **BB'** with $AA_1A_2A_3$ along the *c* aixs (a) and *b* axis (b).

Fig **S5**. View of the tubular unit **T1** along the c axis.

Fig S6. View of the connectivity of T1 with other nine units.

Fig S7. Space-filling view of the super-tubular unit T2 along the c axis.

Fig **S8**. The simulated (red) and experimental (black) XRPD patterns for **1**.

Fig **S9**. TGA of compound **1**.

Table S1. Selected bond distances (Å) and angles (°) for 1.

$\overline{\text{Zn}(1)-\text{N}(1)}$	2.0338(17)
Zn(1)-O(1)	2.1087(15)
Zn(2)-O(2)	1.9494(14)
Zn(2)-N(4)	2.0062(17)
O(1W)-Zn(1)-N(1)	119.10(5)
N(1)#1-Zn(1)-N(1)	121.80(10)
O(1W)-Zn(1)-O(1)	85.78(4)
N(1)#1-Zn(1)-O(1)	91.66(6)
N(1)-Zn(1)-O(1)	92.44(7)
O(1)-Zn(1)-O(1)#1	171.55(8)
O(2)-Zn(2)-O(2)#2	100.74(9)
O(2)-Zn(2)-N(4)#3	110.75(6)
O(2)-Zn(2)-N(4)#4	105.31(7)
N(4)#3-Zn(2)-N(4)#4	122.02(10)

Symmetry transformations used to generate equivalent atoms:

#1 x-y+2/3, -y+4/3, -z-1/6; #2 -x+4/3, -x+y+2/3, -z+1/6; #3 -x+5/3, -y+4/3, -z+1/3; #4 x-1/3, x-y+1/3, z-1/6.