# Electronic Supplementary Material for CrystEngComm # This journal is (c) The Royal Society of Chemistry 2009 data_global _journal_name_full CrystEngComm _journal_coden_cambridge 1350 _journal_year ? _journal_volume ? _journal_page_first ? _publ_contact_author_name 'Ali Morsali' _publ_contact_author_email 'MORSALI A@YAHOO.COM' loop_ _publ_author_name A.Morsali G.Mahmoudi data_07mz202m _database_code_depnum_ccdc_archive 'CCDC 668311' _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety ? _chemical_formula_sum 'C6 H4 Hg N4 S2' _chemical_formula_weight 396.84 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' S S 0.1246 0.1234 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Hg Hg -2.3894 9.2266 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Monoclinic _symmetry_space_group_name_H-M C2/c loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, y, -z+1/2' 'x+1/2, y+1/2, z' '-x+1/2, y+1/2, -z+1/2' '-x, -y, -z' 'x, -y, z-1/2' '-x+1/2, -y+1/2, -z' 'x+1/2, -y+1/2, z-1/2' _cell_length_a 11.8123(11) _cell_length_b 8.1954(8) _cell_length_c 10.9733(10) _cell_angle_alpha 90.00 _cell_angle_beta 117.975(2) _cell_angle_gamma 90.00 _cell_volume 938.16(15) _cell_formula_units_Z 4 _cell_measurement_temperature 100(2) _cell_measurement_reflns_used 2756 _cell_measurement_theta_min 3.16 _cell_measurement_theta_max 30.50 _exptl_crystal_description plate _exptl_crystal_colour colourless _exptl_crystal_size_max 0.20 _exptl_crystal_size_mid 0.09 _exptl_crystal_size_min 0.05 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 2.810 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 720 _exptl_absorpt_coefficient_mu 16.805 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_correction_T_min 0.164 _exptl_absorpt_correction_T_max 0.432 _exptl_absorpt_process_details 'SADABS in SAINT+ (Bruker, 2003)' _exptl_special_details ; ? ; _diffrn_ambient_temperature 100(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker AXS SMART APEX CCD diffractometer' _diffrn_measurement_method '\w scans' _diffrn_detector_area_resol_mean ? _diffrn_standards_number 0 _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 4678 _diffrn_reflns_av_R_equivalents 0.0451 _diffrn_reflns_av_sigmaI/netI 0.0393 _diffrn_reflns_limit_h_min -15 _diffrn_reflns_limit_h_max 15 _diffrn_reflns_limit_k_min -10 _diffrn_reflns_limit_k_max 10 _diffrn_reflns_limit_l_min -14 _diffrn_reflns_limit_l_max 14 _diffrn_reflns_theta_min 3.16 _diffrn_reflns_theta_max 28.28 _reflns_number_total 1166 _reflns_number_gt 1097 _reflns_threshold_expression I>2\s(I) _computing_data_collection 'SMART 5.630 (Bruker, 1997-2002)' _computing_cell_refinement 'SAINT+ 6.45 (Bruker, 2003)' _computing_data_reduction 'SAINT+ 6.45' _computing_structure_solution 'SHELXTL 6.14 (Bruker, 2000-2003)' _computing_structure_refinement 'SHELXTL 6.14' _computing_molecular_graphics 'SHELXTL 6.14' _computing_publication_material 'SHELXTL 6.14' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0324P)^2^+0.0000P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 1166 _refine_ls_number_parameters 61 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0288 _refine_ls_R_factor_gt 0.0260 _refine_ls_wR_factor_ref 0.0594 _refine_ls_wR_factor_gt 0.0585 _refine_ls_goodness_of_fit_ref 1.025 _refine_ls_restrained_S_all 1.025 _refine_ls_shift/su_max 0.001 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group C1 C 0.5576(5) 1.0052(6) 0.8673(5) 0.0137(10) Uani 1 1 d . . . H1 H 0.5989 0.9488 0.9528 0.016 Uiso 1 1 calc R . . C2 C 0.5587(5) 1.1732(7) 0.8679(6) 0.0191(11) Uani 1 1 d . . . H2 H 0.6017 1.2298 0.9532 0.023 Uiso 1 1 calc R . . C3 C 0.3437(5) 0.4544(6) 0.8871(5) 0.0135(10) Uani 1 1 d . . . Hg1 Hg 0.5000 0.60814(3) 0.7500 0.01373(10) Uani 1 2 d S . . N1 N 0.5000 0.9179(7) 0.7500 0.0151(13) Uani 1 2 d S . . N2 N 0.5000 1.2581(9) 0.7500 0.0195(14) Uani 1 2 d S . . N3 N 0.3719(4) 0.3645(5) 0.9785(5) 0.0156(9) Uani 1 1 d . . . S1 S 0.29667(12) 0.58537(16) 0.75554(14) 0.0163(3) Uani 1 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 C1 0.015(3) 0.012(2) 0.015(2) 0.0011(19) 0.007(2) 0.0006(19) C2 0.015(3) 0.023(3) 0.021(3) -0.007(2) 0.010(2) -0.004(2) C3 0.012(2) 0.014(2) 0.016(3) -0.004(2) 0.008(2) -0.002(2) Hg1 0.01568(16) 0.01255(15) 0.01469(16) 0.000 0.00856(12) 0.000 N1 0.017(3) 0.009(3) 0.022(3) 0.000 0.011(3) 0.000 N2 0.011(3) 0.027(4) 0.021(3) 0.000 0.008(3) 0.000 N3 0.012(2) 0.023(2) 0.012(2) -0.0007(17) 0.0061(18) -0.0025(17) S1 0.0115(6) 0.0197(7) 0.0172(6) 0.0069(5) 0.0063(5) 0.0028(5) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag C1 N1 1.345(6) . ? C1 C2 1.377(8) . ? C1 H1 0.9500 . ? C2 N2 1.341(7) . ? C2 H2 0.9500 . ? C3 N3 1.161(7) . ? C3 S1 1.671(5) . ? Hg1 S1 2.4379(13) 2_656 ? Hg1 S1 2.4380(13) . ? Hg1 N1 2.538(6) . ? Hg1 N3 2.643(4) 5_667 ? Hg1 N3 2.643(4) 6_565 ? N1 C1 1.345(6) 2_656 ? N2 C2 1.341(7) 2_656 ? N3 Hg1 2.643(4) 5_667 ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag N1 C1 C2 122.4(5) . . ? N1 C1 H1 118.8 . . ? C2 C1 H1 118.8 . . ? N2 C2 C1 120.9(5) . . ? N2 C2 H2 119.5 . . ? C1 C2 H2 119.5 . . ? N3 C3 S1 177.3(5) . . ? S1 Hg1 S1 171.22(6) 2_656 . ? S1 Hg1 N1 94.39(3) 2_656 . ? S1 Hg1 N1 94.39(3) . . ? S1 Hg1 N3 89.13(10) 2_656 5_667 ? S1 Hg1 N3 91.62(10) . 5_667 ? N1 Hg1 N3 85.13(10) . 5_667 ? S1 Hg1 N3 91.62(10) 2_656 6_565 ? S1 Hg1 N3 89.13(10) . 6_565 ? N1 Hg1 N3 85.13(10) . 6_565 ? N3 Hg1 N3 170.26(19) 5_667 6_565 ? C1 N1 C1 115.7(6) 2_656 . ? C1 N1 Hg1 122.1(3) 2_656 . ? C1 N1 Hg1 122.1(3) . . ? C2 N2 C2 117.5(7) 2_656 . ? C3 N3 Hg1 134.5(4) . 5_667 ? C3 S1 Hg1 97.95(18) . . ? loop_ _geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag N1 C1 C2 N2 1.0(7) . . . . ? C2 C1 N1 C1 -0.5(3) . . . 2_656 ? C2 C1 N1 Hg1 179.5(3) . . . . ? S1 Hg1 N1 C1 92.6(2) 2_656 . . 2_656 ? S1 Hg1 N1 C1 -87.4(2) . . . 2_656 ? N3 Hg1 N1 C1 -178.7(3) 5_667 . . 2_656 ? N3 Hg1 N1 C1 1.3(3) 6_565 . . 2_656 ? S1 Hg1 N1 C1 -87.4(2) 2_656 . . . ? S1 Hg1 N1 C1 92.6(2) . . . . ? N3 Hg1 N1 C1 1.3(3) 5_667 . . . ? N3 Hg1 N1 C1 -178.7(3) 6_565 . . . ? C1 C2 N2 C2 -0.5(3) . . . 2_656 ? N1 Hg1 S1 C3 -129.78(18) . . . . ? N3 Hg1 S1 C3 -44.5(2) 5_667 . . . ? N3 Hg1 S1 C3 145.2(2) 6_565 . . . ? _diffrn_measured_fraction_theta_max 1.000 _diffrn_reflns_theta_full 28.28 _diffrn_measured_fraction_theta_full 1.000 _refine_diff_density_max 1.796 _refine_diff_density_min -1.202 _refine_diff_density_rms 0.238 # Attachment '338-G_07mz188m.cif' data_07mz188m _database_code_depnum_ccdc_archive 'CCDC 668312' _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety '0.5(C4 H4 Hg2 I4 N2)' _chemical_formula_sum 'C2 H2 Hg I2 N' _chemical_formula_weight 494.44 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' I I -0.4742 1.8119 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Hg Hg -2.3894 9.2266 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Triclinic _symmetry_space_group_name_H-M P-1 loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, -z' _cell_length_a 7.0171(12) _cell_length_b 7.0163(12) _cell_length_c 8.3634(14) _cell_angle_alpha 109.362(4) _cell_angle_beta 96.040(4) _cell_angle_gamma 112.625(3) _cell_volume 345.53(10) _cell_formula_units_Z 2 _cell_measurement_temperature 100(2) _cell_measurement_reflns_used 4860 _cell_measurement_theta_min 2.68 _cell_measurement_theta_max 30.609 _exptl_crystal_description block _exptl_crystal_colour colourless _exptl_crystal_size_max 0.10 _exptl_crystal_size_mid 0.08 _exptl_crystal_size_min 0.05 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 4.752 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 414.0 _exptl_absorpt_coefficient_mu 31.085 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_correction_T_min 0.084 _exptl_absorpt_correction_T_max 0.211 _exptl_absorpt_process_details 'TWINABS in SAINT+ (Bruker, 2003)' _exptl_special_details ; The crystal under investigation was found to be non-merohedrally twinned. The orientation matrices for the two components were identified using the program Cell_Now, and the two components were integrated using Saint, resulting in a total of 7573 reflections. 3469 reflections (1795 unique ones) involved component 1 only (mean I/sigma = 19.4), 3394 reflections (1762 unique ones) involved component 2 only (mean I/sigma = 8.1), and 710 reflections (411 unique ones) involved both components (mean I/sigma = 26.3). The exact twin matrix identified by the integration program was found to be 1.00079 0.00027 0.00113, -0.77007 -1.00132 -0.00267, -0.24949 0.00456 -0.99774. The data were corrected for absorption using twinabs, and the structure was solved using direct methods with only the non-overlapping reflections of component 1. The structure was refined using the hklf 5 routine with all reflections of component 1 (including the overlapping ones) below a d-spacing threshold of 0.75, resulting in a BASF value of 0.127(4). ; _diffrn_ambient_temperature 100(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker AXS SMART APEX CCD diffractometer' _diffrn_measurement_method '\w scans' _diffrn_detector_area_resol_mean ? _diffrn_standards_number 0 _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 7573 _diffrn_reflns_av_R_equivalents 0.0000 _diffrn_reflns_av_sigmaI/netI 0.0239 _diffrn_reflns_limit_h_min -9 _diffrn_reflns_limit_h_max 9 _diffrn_reflns_limit_k_min -9 _diffrn_reflns_limit_k_max 8 _diffrn_reflns_limit_l_min 0 _diffrn_reflns_limit_l_max 11 _diffrn_reflns_theta_min 2.68 _diffrn_reflns_theta_max 28.28 _reflns_number_total 1824 _reflns_number_gt 1787 _reflns_threshold_expression I>2\s(I) _computing_data_collection 'SMART 5.630 (Bruker, 1997-2002)' _computing_cell_refinement 'SAINT+ 6.45 (Bruker, 2003)' _computing_data_reduction 'SAINT+ 6.45' _computing_structure_solution 'SHELXTL 6.14 (Bruker, 2000-2003)' _computing_structure_refinement 'SHELXTL 6.14' _computing_molecular_graphics 'SHELXTL 6.14' _computing_publication_material 'SHELXTL 6.14' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.1068P)^2^+3.0279P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method SHELXL _refine_ls_extinction_coef 0.0073(11) _refine_ls_extinction_expression Fc^*^=kFc[1+0.001xFc^2^\l^3^/sin(2\q)]^-1/4^ _refine_ls_number_reflns 1824 _refine_ls_number_parameters 57 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0510 _refine_ls_R_factor_gt 0.0503 _refine_ls_wR_factor_ref 0.1358 _refine_ls_wR_factor_gt 0.1333 _refine_ls_goodness_of_fit_ref 1.069 _refine_ls_restrained_S_all 1.069 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group C1 C 0.3410(18) 0.829(2) 1.0086(16) 0.015(2) Uani 1 1 d . . . H1 H 0.2274 0.7085 1.0193 0.018 Uiso 1 1 calc R . . C2 C 0.4402(17) 1.039(2) 1.1489(16) 0.015(2) Uani 1 1 d . . . H2 H 0.3923 1.0604 1.2527 0.018 Uiso 1 1 calc R . . Hg1 Hg 0.22489(7) 0.40615(7) 0.61288(6) 0.0140(2) Uani 1 1 d . . . I1 I 0.25709(11) 0.54110(14) 0.35328(10) 0.0140(2) Uani 1 1 d . . . I2 I 0.13643(11) 0.15865(13) 0.79441(10) 0.0144(2) Uani 1 1 d . . . N1 N 0.4001(15) 0.7909(16) 0.8601(13) 0.0110(17) Uani 1 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 C1 0.013(5) 0.015(6) 0.010(5) -0.001(4) 0.002(4) 0.004(4) C2 0.008(5) 0.015(6) 0.012(5) -0.001(4) 0.000(4) 0.002(4) Hg1 0.0180(3) 0.0112(3) 0.0088(3) 0.0016(2) 0.00413(19) 0.0045(2) I1 0.0133(4) 0.0183(4) 0.0105(4) 0.0059(3) 0.0039(3) 0.0070(3) I2 0.0144(4) 0.0142(4) 0.0140(4) 0.0057(3) 0.0045(3) 0.0058(3) N1 0.015(4) 0.010(4) 0.009(4) 0.003(4) 0.004(4) 0.007(4) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag C1 N1 1.327(15) . ? C1 C2 1.388(17) . ? C1 H1 0.9500 . ? C2 N1 1.317(16) 2_677 ? C2 H2 0.9500 . ? Hg1 N1 2.507(10) . ? Hg1 I2 2.6121(9) . ? Hg1 I1 2.6388(8) . ? N1 C2 1.317(16) 2_677 ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag N1 C1 C2 121.9(12) . . ? N1 C1 H1 119.0 . . ? C2 C1 H1 119.0 . . ? N1 C2 C1 120.8(12) 2_677 . ? N1 C2 H2 119.6 2_677 . ? C1 C2 H2 119.6 . . ? N1 Hg1 I2 99.5(2) . . ? N1 Hg1 I1 97.1(2) . . ? I2 Hg1 I1 163.48(3) . . ? C2 N1 C1 117.3(10) 2_677 . ? C2 N1 Hg1 121.6(8) 2_677 . ? C1 N1 Hg1 121.1(8) . . ? loop_ _geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag N1 C1 C2 N1 -0.8(19) . . . 2_677 ? C2 C1 N1 C2 0.8(19) . . . 2_677 ? C2 C1 N1 Hg1 178.1(8) . . . . ? I2 Hg1 N1 C2 145.5(8) . . . 2_677 ? I1 Hg1 N1 C2 -35.2(8) . . . 2_677 ? I2 Hg1 N1 C1 -31.7(9) . . . . ? I1 Hg1 N1 C1 147.6(8) . . . . ? _diffrn_measured_fraction_theta_max 0.997 _diffrn_reflns_theta_full 28.28 _diffrn_measured_fraction_theta_full 0.997 _refine_diff_density_max 4.509 _refine_diff_density_min -6.006 _refine_diff_density_rms 0.693 # start Validation Reply Form _vrf_REFLT03_07mz188m ; PROBLEM: Reflection count > 5% excess reflns - sys abs data present? RESPONSE: The crystal under investigation was non-merohedrally twinned (see _exptl_special_details for details). The data were integrated using TWINSAINT, equivalent reflections were merged in TWINABS, and all reflections having at least one contribution from the major component had been used for the hklf 5 refinement. Due to "twin pairing errors" (equivalent reflections being counted as overlapping for one reflection, but as not overlaped for an eqivalent one) the merging in TWINABS is incomplete, thus resulting in too many independent reflections. ; _vrf_PLAT021_07mz188m ; PROBLEM: Ratio Unique / Expected Reflections too High ... 1.06 RESPONSE: The crystal under investigation was non-merohedrally twinned (see _exptl_special_details for details). The data were integrated using TWINSAINT, equivalent reflections were merged in TWINABS, and all reflections having at least one contribution from the major component had been used for the hklf 5 refinement. Due to "twin pairing errors" (equivalent reflections being counted as overlapping for one reflection, but as not overlaped for an eqivalent one) the merging in TWINABS is incomplete, thus resulting in too many independent reflections. ; # end Validation Reply Form # Attachment '340-G_07mz192m.cif' data_07mz192m _database_code_depnum_ccdc_archive 'CCDC 668313' _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety ? _chemical_formula_sum 'C4 H4 Br2 Hg N2' _chemical_formula_weight 440.48 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' O O 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Br Br -0.2901 2.4595 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Hg Hg -2.3894 9.2266 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Monoclinic _symmetry_space_group_name_H-M C2/m loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, y, -z' 'x+1/2, y+1/2, z' '-x+1/2, y+1/2, -z' '-x, -y, -z' 'x, -y, z' '-x+1/2, -y+1/2, -z' 'x+1/2, -y+1/2, z' _cell_length_a 12.321(6) _cell_length_b 7.735(4) _cell_length_c 3.9036(19) _cell_angle_alpha 90.00 _cell_angle_beta 95.497(11) _cell_angle_gamma 90.00 _cell_volume 370.3(3) _cell_formula_units_Z 2 _cell_measurement_temperature 100(2) _cell_measurement_reflns_used 1508 _cell_measurement_theta_min 3.1135 _cell_measurement_theta_max 30.508 _exptl_crystal_description block _exptl_crystal_colour colourless _exptl_crystal_size_max 0.09 _exptl_crystal_size_mid 0.08 _exptl_crystal_size_min 0.06 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 3.951 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 384 _exptl_absorpt_coefficient_mu 31.481 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_correction_T_min 0.065 _exptl_absorpt_correction_T_max 0.151 _exptl_absorpt_process_details 'TWINABS in SAINT+ (Bruker, 2003)' _exptl_special_details ; The crystal under investigation was found to be non-merohedrally twinned. The orientation matrices for the two components were identified using the program Cell_Now, and the two components were integrated using Saint, resulting in a total of 3081 reflections. 1486 reflections (575 unique ones) involved component 1 only (mean I/sigma = 10.9), 1514 reflections (573 unique ones) involved component 2 only (mean I/sigma = 4.7), and 81 reflections (42 unique ones) involved both components (mean I/sigma = 12.9). The exact twin matrix identified by the integration program was found to be -1.00378 0.01756 -0.41126, 0.00691 1.00032 0.00683, 0.04181 0.00047 -0.97764. The data were corrected for absorption using twinabs, and the structure was solved using direct methods with only the non-overlapping reflections of component 1. The structure was refined using the hklf 5 routine with all reflections of component 1 (including the overlapping ones) below a d-spacing threshold of 0.75, resulting in a BASF value of 0.197(9). ; _diffrn_ambient_temperature 100(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker AXS SMART APEX CCD diffractometer' _diffrn_measurement_method '\w scans' _diffrn_detector_area_resol_mean ? _diffrn_standards_number 0 _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 3081 _diffrn_reflns_av_R_equivalents 0.0000 _diffrn_reflns_av_sigmaI/netI 0.0411 _diffrn_reflns_limit_h_min -16 _diffrn_reflns_limit_h_max 16 _diffrn_reflns_limit_k_min 0 _diffrn_reflns_limit_k_max 10 _diffrn_reflns_limit_l_min 0 _diffrn_reflns_limit_l_max 5 _diffrn_reflns_theta_min 3.11 _diffrn_reflns_theta_max 28.25 _reflns_number_total 511 _reflns_number_gt 471 _reflns_threshold_expression I>2\s(I) _computing_data_collection 'SMART 5.630 (Bruker, 1997-2002)' _computing_cell_refinement 'SAINT+ 6.45 (Bruker, 2003)' _computing_data_reduction 'SAINT+ 6.45' _computing_structure_solution 'SHELXTL 6.14 (Bruker, 2000-2003)' _computing_structure_refinement 'SHELXTL 6.14' _computing_molecular_graphics 'SHELXTL 6.14' _computing_publication_material 'SHELXTL 6.14' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0519P)^2^+0.0000P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 511 _refine_ls_number_parameters 26 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0405 _refine_ls_R_factor_gt 0.0376 _refine_ls_wR_factor_ref 0.0856 _refine_ls_wR_factor_gt 0.0847 _refine_ls_goodness_of_fit_ref 1.046 _refine_ls_restrained_S_all 1.046 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Hg1 Hg 0.5000 1.0000 0.5000 0.0162(2) Uani 1 4 d S . . Br1 Br 0.33987(8) 1.0000 0.9894(3) 0.0155(3) Uani 1 2 d S . . N1 N 0.5000 0.6799(12) 0.5000 0.0145(19) Uani 1 2 d S . . C1 C 0.5877(6) 0.5906(10) 0.426(2) 0.0165(16) Uani 1 1 d . . . H1 H 0.6510 0.6509 0.3725 0.020 Uiso 1 1 calc R . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Hg1 0.0221(4) 0.0145(3) 0.0122(3) 0.000 0.0027(2) 0.000 Br1 0.0160(6) 0.0170(6) 0.0136(6) 0.000 0.0028(4) 0.000 N1 0.018(5) 0.014(5) 0.012(4) 0.000 0.002(3) 0.000 C1 0.016(4) 0.016(4) 0.018(4) -0.001(3) 0.003(3) -0.006(3) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Hg1 N1 2.476(10) 5_676 ? Hg1 N1 2.476(10) . ? Hg1 Br1 2.6668(14) 1_554 ? Hg1 Br1 2.6669(14) 5_677 ? Hg1 Br1 2.8748(14) . ? Hg1 Br1 2.8748(14) 5_676 ? Br1 Hg1 2.6669(14) 1_556 ? N1 C1 1.337(9) 2_656 ? N1 C1 1.337(9) . ? C1 C1 1.401(16) 6_565 ? C1 H1 0.9500 . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag N1 Hg1 N1 180.0 5_676 . ? N1 Hg1 Br1 90.0 5_676 1_554 ? N1 Hg1 Br1 90.0 . 1_554 ? N1 Hg1 Br1 90.0 5_676 5_677 ? N1 Hg1 Br1 90.0 . 5_677 ? Br1 Hg1 Br1 180.0 1_554 5_677 ? N1 Hg1 Br1 90.0 5_676 . ? N1 Hg1 Br1 90.0 . . ? Br1 Hg1 Br1 89.48(5) 1_554 . ? Br1 Hg1 Br1 90.52(5) 5_677 . ? N1 Hg1 Br1 90.00 5_676 5_676 ? N1 Hg1 Br1 90.0 . 5_676 ? Br1 Hg1 Br1 90.52(5) 1_554 5_676 ? Br1 Hg1 Br1 89.48(5) 5_677 5_676 ? Br1 Hg1 Br1 180.0 . 5_676 ? Hg1 Br1 Hg1 89.48(5) 1_556 . ? C1 N1 C1 117.8(10) 2_656 . ? C1 N1 Hg1 121.1(5) 2_656 . ? C1 N1 Hg1 121.1(5) . . ? N1 C1 C1 121.1(5) . 6_565 ? N1 C1 H1 119.4 . . ? C1 C1 H1 119.4 6_565 . ? loop_ _geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag N1 Hg1 Br1 Hg1 -90.0 5_676 . . 1_556 ? N1 Hg1 Br1 Hg1 90.0 . . . 1_556 ? Br1 Hg1 Br1 Hg1 180.0 1_554 . . 1_556 ? Br1 Hg1 Br1 Hg1 0.0 5_677 . . 1_556 ? Br1 Hg1 N1 C1 -62.6(4) 1_554 . . 2_656 ? Br1 Hg1 N1 C1 117.4(4) 5_677 . . 2_656 ? Br1 Hg1 N1 C1 26.9(4) . . . 2_656 ? Br1 Hg1 N1 C1 -153.1(4) 5_676 . . 2_656 ? Br1 Hg1 N1 C1 117.4(4) 1_554 . . . ? Br1 Hg1 N1 C1 -62.6(4) 5_677 . . . ? Br1 Hg1 N1 C1 -153.1(4) . . . . ? Br1 Hg1 N1 C1 26.9(4) 5_676 . . . ? C1 N1 C1 C1 0.0 2_656 . . 6_565 ? Hg1 N1 C1 C1 180.0 . . . 6_565 ? _diffrn_measured_fraction_theta_max 0.986 _diffrn_reflns_theta_full 28.25 _diffrn_measured_fraction_theta_full 0.986 _refine_diff_density_max 2.602 _refine_diff_density_min -2.897 _refine_diff_density_rms 0.398 # start Validation Reply Form _vrf_PLAT021_07mz192m ; PROBLEM: Ratio Unique / Expected Reflections too High ... 1.02 RESPONSE: The crystal under investigation was non-merohedrally twinned (see _exptl_special_details for details). The data were integrated using TWINSAINT, equivalent reflections were merged in TWINABS, and all reflections having at least one contribution from the major component had been used for the hklf 5 refinement. Due to "twin pairing errors" (equivalent reflections being counted as overlapping for one reflection, but as not overlaped for an eqivalent one) the merging in TWINABS is incomplete, thus resulting in too many independent reflections. ; # end Validation Reply Form # Attachment '346-G_07mz288m.cif' data_07mz288m _database_code_depnum_ccdc_archive 'CCDC 668314' _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety ? _chemical_formula_sum 'C3 H4 Br2 Hg N' _chemical_formula_weight 414.46 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Br Br -0.2901 2.4595 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Hg Hg -2.3894 9.2266 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Triclinic _symmetry_space_group_name_H-M P-1 loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, -z' _cell_length_a 4.052(3) _cell_length_b 9.002(7) _cell_length_c 9.734(8) _cell_angle_alpha 98.723(13) _cell_angle_beta 100.464(13) _cell_angle_gamma 99.231(14) _cell_volume 338.6(4) _cell_formula_units_Z 2 _cell_measurement_temperature 100(2) _cell_measurement_reflns_used 2204 _cell_measurement_theta_min 2.17 _cell_measurement_theta_max 30.71 _exptl_crystal_description block _exptl_crystal_colour colourless _exptl_crystal_size_max 0.08 _exptl_crystal_size_mid 0.07 _exptl_crystal_size_min 0.05 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 4.065 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 358 _exptl_absorpt_coefficient_mu 34.410 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_correction_T_min 0.061 _exptl_absorpt_correction_T_max 0.179 _exptl_absorpt_process_details 'SADABS (Sheldrick, 2007)' _exptl_special_details ; ? ; _diffrn_ambient_temperature 100(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker AXS SMART APEX CCD diffractometer' _diffrn_measurement_method '\w scans' _diffrn_detector_area_resol_mean ? _diffrn_standards_number 0 _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 3157 _diffrn_reflns_av_R_equivalents 0.0376 _diffrn_reflns_av_sigmaI/netI 0.0613 _diffrn_reflns_limit_h_min -5 _diffrn_reflns_limit_h_max 5 _diffrn_reflns_limit_k_min -11 _diffrn_reflns_limit_k_max 11 _diffrn_reflns_limit_l_min -12 _diffrn_reflns_limit_l_max 12 _diffrn_reflns_theta_min 2.17 _diffrn_reflns_theta_max 28.28 _reflns_number_total 1641 _reflns_number_gt 1341 _reflns_threshold_expression I>2\s(I) _computing_data_collection 'SMART 5.630 (Bruker, 1997-2002)' _computing_cell_refinement 'SAINT+ 6.45 (Bruker, 2003)' _computing_data_reduction 'SAINT+ 6.45' _computing_structure_solution 'SHELXTL 6.14 (Bruker, 2000-2003)' _computing_structure_refinement 'SHELXTL 6.14' _computing_molecular_graphics 'SHELXTL 6.14' _computing_publication_material 'SHELXTL 6.14' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.1095P)^2^] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 1641 _refine_ls_number_parameters 65 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0717 _refine_ls_R_factor_gt 0.0598 _refine_ls_wR_factor_ref 0.1581 _refine_ls_wR_factor_gt 0.1514 _refine_ls_goodness_of_fit_ref 1.034 _refine_ls_restrained_S_all 1.034 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Br2 Br 0.5730(4) 0.77946(17) 0.48797(15) 0.0191(3) Uani 1 1 d . . . Br3 Br -0.2495(4) 0.97808(17) 0.16632(15) 0.0189(3) Uani 1 1 d . . . C1 C -0.055(4) 0.4721(16) 0.1281(15) 0.016(3) Uani 1 1 d . . . C2 C -0.075(4) 0.3551(17) 0.0133(15) 0.019(3) Uani 1 1 d . . . H2 H -0.1237 0.2519 0.0260 0.023 Uiso 1 1 calc R . . C4 C -0.113(5) 0.4380(18) 0.2705(17) 0.029(4) Uani 1 1 d . . . H4A H 0.0895 0.4871 0.3447 0.043 Uiso 1 1 calc R . . H4B H -0.1528 0.3270 0.2666 0.043 Uiso 1 1 calc R . . H4C H -0.3124 0.4778 0.2923 0.043 Uiso 1 1 calc R . . Hg1 Hg 0.15503(14) 0.85752(6) 0.31022(5) 0.0195(2) Uani 1 1 d . . . N1 N 0.027(3) 0.6176(14) 0.1145(14) 0.022(3) Uani 1 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Br2 0.0231(7) 0.0230(7) 0.0125(7) 0.0045(5) 0.0002(5) 0.0112(6) Br3 0.0205(7) 0.0216(7) 0.0157(7) 0.0062(6) -0.0003(5) 0.0095(5) C1 0.022(7) 0.016(6) 0.014(7) 0.008(5) 0.013(5) 0.004(5) C2 0.035(8) 0.014(6) 0.011(6) 0.007(5) 0.002(6) 0.012(6) C4 0.043(10) 0.021(8) 0.021(8) 0.003(6) 0.004(7) 0.008(7) Hg1 0.0227(3) 0.0223(3) 0.0129(3) 0.0009(2) -0.0019(2) 0.0112(2) N1 0.029(7) 0.014(6) 0.020(6) -0.004(5) -0.004(5) 0.008(5) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Br2 Hg1 2.4581(19) . ? Br3 Hg1 2.4546(19) . ? Br3 Hg1 3.132(2) 1_455 ? C1 N1 1.330(18) . ? C1 C2 1.396(19) . ? C1 C4 1.52(2) . ? C2 N1 1.346(19) 2_565 ? C2 H2 0.9500 . ? C4 H4A 0.9800 . ? C4 H4B 0.9800 . ? C4 H4C 0.9800 . ? Hg1 N1 2.568(12) . ? Hg1 Br3 3.132(2) 1_655 ? N1 C2 1.346(19) 2_565 ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag Hg1 Br3 Hg1 92.18(7) . 1_455 ? N1 C1 C2 119.7(12) . . ? N1 C1 C4 118.7(13) . . ? C2 C1 C4 121.6(13) . . ? N1 C2 C1 122.8(13) 2_565 . ? N1 C2 H2 118.6 2_565 . ? C1 C2 H2 118.6 . . ? C1 C4 H4A 109.5 . . ? C1 C4 H4B 109.5 . . ? H4A C4 H4B 109.5 . . ? C1 C4 H4C 109.5 . . ? H4A C4 H4C 109.5 . . ? H4B C4 H4C 109.5 . . ? Br3 Hg1 Br2 169.39(5) . . ? Br3 Hg1 N1 91.3(3) . . ? Br2 Hg1 N1 99.3(3) . . ? Br3 Hg1 Br3 92.18(7) . 1_655 ? Br2 Hg1 Br3 89.14(7) . 1_655 ? N1 Hg1 Br3 86.0(3) . 1_655 ? C1 N1 C2 117.5(12) . 2_565 ? C1 N1 Hg1 127.7(10) . . ? C2 N1 Hg1 114.6(9) 2_565 . ? loop_ _geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag N1 C1 C2 N1 -3(3) . . . 2_565 ? C4 C1 C2 N1 179.5(15) . . . 2_565 ? Hg1 Br3 Hg1 Br2 -83.0(3) 1_455 . . . ? Hg1 Br3 Hg1 N1 93.9(3) 1_455 . . . ? Hg1 Br3 Hg1 Br3 179.999(1) 1_455 . . 1_655 ? C2 C1 N1 C2 2(2) . . . 2_565 ? C4 C1 N1 C2 -179.6(15) . . . 2_565 ? C2 C1 N1 Hg1 -172.0(11) . . . . ? C4 C1 N1 Hg1 6(2) . . . . ? Br3 Hg1 N1 C1 -129.6(12) . . . . ? Br2 Hg1 N1 C1 49.8(13) . . . . ? Br3 Hg1 N1 C1 138.3(12) 1_655 . . . ? Br3 Hg1 N1 C2 55.7(11) . . . 2_565 ? Br2 Hg1 N1 C2 -124.8(10) . . . 2_565 ? Br3 Hg1 N1 C2 -36.4(10) 1_655 . . 2_565 ? _diffrn_measured_fraction_theta_max 0.979 _diffrn_reflns_theta_full 28.28 _diffrn_measured_fraction_theta_full 0.979 _refine_diff_density_max 7.064 _refine_diff_density_min -4.531 _refine_diff_density_rms 0.620 # Attachment '347-G_07mz286m.cif' data_07mz286m _database_code_depnum_ccdc_archive 'CCDC 668315' _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety ? _chemical_formula_sum 'C5 H4 Hg N3 S2' _chemical_formula_weight 370.84 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' S S 0.1246 0.1234 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Hg Hg -2.3894 9.2266 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Monoclinic _symmetry_space_group_name_H-M C2/c loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, y, -z+1/2' 'x+1/2, y+1/2, z' '-x+1/2, y+1/2, -z+1/2' '-x, -y, -z' 'x, -y, z-1/2' '-x+1/2, -y+1/2, -z' 'x+1/2, -y+1/2, z-1/2' _cell_length_a 15.295(3) _cell_length_b 11.035(2) _cell_length_c 11.151(2) _cell_angle_alpha 90.00 _cell_angle_beta 115.250(3) _cell_angle_gamma 90.00 _cell_volume 1702.3(6) _cell_formula_units_Z 8 _cell_measurement_temperature 100(2) _cell_measurement_reflns_used 4768 _cell_measurement_theta_min 2.36 _cell_measurement_theta_max 30.57 _exptl_crystal_description plate _exptl_crystal_colour colourless _exptl_crystal_size_max 0.27 _exptl_crystal_size_mid 0.14 _exptl_crystal_size_min 0.05 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 2.894 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 1336 _exptl_absorpt_coefficient_mu 18.508 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_correction_T_min 0.045 _exptl_absorpt_correction_T_max 0.396 _exptl_absorpt_process_details 'SADABS (Sheldrick, 2007)' _exptl_special_details ; ? ; _diffrn_ambient_temperature 100(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker AXS SMART APEX CCD diffractometer' _diffrn_measurement_method '\w scans' _diffrn_detector_area_resol_mean ? _diffrn_standards_number 0 _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 8198 _diffrn_reflns_av_R_equivalents 0.0560 _diffrn_reflns_av_sigmaI/netI 0.0527 _diffrn_reflns_limit_h_min -20 _diffrn_reflns_limit_h_max 20 _diffrn_reflns_limit_k_min -14 _diffrn_reflns_limit_k_max 14 _diffrn_reflns_limit_l_min -14 _diffrn_reflns_limit_l_max 14 _diffrn_reflns_theta_min 2.36 _diffrn_reflns_theta_max 28.27 _reflns_number_total 2116 _reflns_number_gt 1707 _reflns_threshold_expression I>2\s(I) _computing_data_collection 'SMART 5.630 (Bruker, 1997-2002)' _computing_cell_refinement 'SAINT+ 6.45 (Bruker, 2003)' _computing_data_reduction 'SAINT+ 6.45' _computing_structure_solution 'SHELXTL 6.14 (Bruker, 2000-2003)' _computing_structure_refinement 'SHELXTL 6.14' _computing_molecular_graphics 'SHELXTL 6.14' _computing_publication_material 'SHELXTL 6.14' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.1177P)^2^+0.0000P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 2116 _refine_ls_number_parameters 101 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0727 _refine_ls_R_factor_gt 0.0623 _refine_ls_wR_factor_ref 0.1643 _refine_ls_wR_factor_gt 0.1559 _refine_ls_goodness_of_fit_ref 1.046 _refine_ls_restrained_S_all 1.046 _refine_ls_shift/su_max 0.001 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Hg1 Hg 0.23761(3) 0.41239(3) 0.09874(3) 0.0224(2) Uani 1 1 d . . . S1 S 0.1164(2) 0.3387(2) -0.1082(3) 0.0235(6) Uani 1 1 d . . . N3 N 0.2370(7) 0.6343(7) 0.0373(8) 0.0208(18) Uani 1 1 d . . . C5 C 0.0617(9) 0.6669(9) -0.0485(11) 0.027(2) Uani 1 1 d . . . H5A H 0.0452 0.5958 -0.1067 0.040 Uiso 1 1 calc R . . H5B H 0.0151 0.7319 -0.0916 0.040 Uiso 1 1 calc R . . H5C H 0.0596 0.6453 0.0355 0.040 Uiso 1 1 calc R . . C3 C 0.3252(9) 0.6753(9) 0.0605(11) 0.027(2) Uani 1 1 d . . . H3 H 0.3795 0.6240 0.1043 0.033 Uiso 1 1 calc R . . C4 C 0.1603(9) 0.7088(9) -0.0224(10) 0.024(2) Uani 1 1 d . . . S2 S 0.3893(2) 0.4146(2) 0.2919(3) 0.0253(6) Uani 1 1 d . . . C1 C 0.1332(8) 0.4462(10) -0.2038(10) 0.022(2) Uani 1 1 d . . . C2 C 0.3714(8) 0.5377(10) 0.3686(10) 0.025(2) Uani 1 1 d . . . N1 N 0.1415(7) 0.5177(8) -0.2748(9) 0.028(2) Uani 1 1 d . . . N2 N 0.3643(9) 0.6216(11) 0.4253(12) 0.042(3) Uani 1 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Hg1 0.0362(3) 0.0231(3) 0.0104(3) -0.00017(12) 0.0122(2) -0.00133(15) S1 0.0375(16) 0.0236(11) 0.0112(11) -0.0006(9) 0.0123(11) -0.0023(11) N3 0.038(5) 0.019(4) 0.009(4) -0.002(3) 0.014(4) -0.003(4) C5 0.041(7) 0.025(5) 0.015(5) 0.003(4) 0.014(5) -0.003(5) C3 0.046(7) 0.022(5) 0.020(5) 0.006(4) 0.019(5) 0.006(5) C4 0.041(7) 0.023(5) 0.010(4) 0.001(4) 0.014(5) 0.000(4) S2 0.0336(16) 0.0294(14) 0.0134(13) -0.0001(9) 0.0103(12) 0.0027(10) C1 0.029(6) 0.030(5) 0.011(4) -0.001(4) 0.012(4) -0.005(4) C2 0.026(6) 0.034(5) 0.011(4) -0.003(4) 0.004(4) 0.002(5) N1 0.037(6) 0.034(5) 0.015(4) 0.002(4) 0.012(4) 0.007(4) N2 0.043(7) 0.048(6) 0.035(6) -0.013(5) 0.016(6) -0.001(5) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Hg1 S2 2.400(3) . ? Hg1 S1 2.403(3) . ? Hg1 N3 2.542(8) . ? Hg1 N1 2.552(10) 6_566 ? S1 C1 1.686(10) . ? N3 C3 1.339(15) . ? N3 C4 1.353(14) . ? C5 C4 1.483(16) . ? C5 H5A 0.9800 . ? C5 H5B 0.9800 . ? C5 H5C 0.9800 . ? C3 C4 1.394(13) 7_565 ? C3 H3 0.9500 . ? C4 C3 1.394(13) 7_565 ? S2 C2 1.689(11) . ? C1 N1 1.163(14) . ? C2 N2 1.152(16) . ? N1 Hg1 2.552(10) 6_565 ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag S2 Hg1 S1 156.90(9) . . ? S2 Hg1 N3 97.1(2) . . ? S1 Hg1 N3 98.9(2) . . ? S2 Hg1 N1 93.7(2) . 6_566 ? S1 Hg1 N1 104.0(2) . 6_566 ? N3 Hg1 N1 85.5(3) . 6_566 ? C1 S1 Hg1 96.1(4) . . ? C3 N3 C4 118.7(9) . . ? C3 N3 Hg1 112.7(7) . . ? C4 N3 Hg1 128.4(7) . . ? C4 C5 H5A 109.5 . . ? C4 C5 H5B 109.5 . . ? H5A C5 H5B 109.5 . . ? C4 C5 H5C 109.5 . . ? H5A C5 H5C 109.5 . . ? H5B C5 H5C 109.5 . . ? N3 C3 C4 122.0(10) . 7_565 ? N3 C3 H3 119.0 . . ? C4 C3 H3 119.0 7_565 . ? N3 C4 C3 119.3(10) . 7_565 ? N3 C4 C5 120.2(9) . . ? C3 C4 C5 120.5(10) 7_565 . ? C2 S2 Hg1 99.2(4) . . ? N1 C1 S1 176.9(10) . . ? N2 C2 S2 176.4(11) . . ? C1 N1 Hg1 146.9(9) . 6_565 ? loop_ _geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag S2 Hg1 S1 C1 -106.9(4) . . . . ? N3 Hg1 S1 C1 26.3(4) . . . . ? N1 Hg1 S1 C1 113.9(4) 6_566 . . . ? S2 Hg1 N3 C3 36.8(7) . . . . ? S1 Hg1 N3 C3 -126.5(7) . . . . ? N1 Hg1 N3 C3 130.0(7) 6_566 . . . ? S2 Hg1 N3 C4 -148.4(8) . . . . ? S1 Hg1 N3 C4 48.4(8) . . . . ? N1 Hg1 N3 C4 -55.2(8) 6_566 . . . ? C4 N3 C3 C4 -1.5(16) . . . 7_565 ? Hg1 N3 C3 C4 173.9(8) . . . 7_565 ? C3 N3 C4 C3 1.4(15) . . . 7_565 ? Hg1 N3 C4 C3 -173.1(7) . . . 7_565 ? C3 N3 C4 C5 -179.4(9) . . . . ? Hg1 N3 C4 C5 6.1(13) . . . . ? S1 Hg1 S2 C2 -177.4(4) . . . . ? N3 Hg1 S2 C2 49.2(4) . . . . ? N1 Hg1 S2 C2 -36.8(5) 6_566 . . . ? _diffrn_measured_fraction_theta_max 0.998 _diffrn_reflns_theta_full 28.27 _diffrn_measured_fraction_theta_full 0.998 _refine_diff_density_max 8.019 _refine_diff_density_min -5.999 _refine_diff_density_rms 0.643 # Attachment '354-G_07mz416m.cif' data_07mz416m _database_code_depnum_ccdc_archive 'CCDC 668316' _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety ? _chemical_formula_sum 'C6 H8 Br2 Hg N2' _chemical_formula_weight 468.53 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' S S 0.1246 0.1234 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Br Br -0.2901 2.4595 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Hg Hg -2.3894 9.2266 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Triclinic _symmetry_space_group_name_H-M P-1 loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, -z' _cell_length_a 4.0289(8) _cell_length_b 10.454(2) _cell_length_c 12.306(2) _cell_angle_alpha 105.738(4) _cell_angle_beta 94.848(4) _cell_angle_gamma 100.308(4) _cell_volume 485.99(16) _cell_formula_units_Z 2 _cell_measurement_temperature 100(2) _cell_measurement_reflns_used 3800 _cell_measurement_theta_min 3.0665 _cell_measurement_theta_max 30.589 _exptl_crystal_description needle _exptl_crystal_colour colourless _exptl_crystal_size_max 0.45 _exptl_crystal_size_mid 0.10 _exptl_crystal_size_min 0.06 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 3.202 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 416 _exptl_absorpt_coefficient_mu 23.999 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_correction_T_min 0.064 _exptl_absorpt_correction_T_max 0.237 _exptl_absorpt_process_details 'TWINABS (Sheldrick, 2007)' _exptl_special_details ; The crystal under investigation was found to be non-merohedrally twinned. The orientation matrices for the two components were identified using the program Cell_Now, and the two components were integrated using Saint, resulting in a total of 7858 reflections. 2643 reflections (1550 unique ones) involved component 1 only (mean I/sigma = 10.8), 2645 reflections (1545 unique ones) involved component 2 only (mean I/sigma = 4.6), and 2570 reflections (1541 unique ones) involved both components (mean I/sigma = 12.2). The exact twin matrix identified by the integration program was found to be 1.00044 -0.00004 -0.00085, -0.92730 -0.99917 0.00296, -0.53254 -0.00551 -0.99903. The data were corrected for absorption using twinabs, and the structure was solved using direct methods with only the non-overlapping reflections of component 1. The structure was refined using the hklf 5 routine with all reflections of component 1 (including the overlapping ones) below a d-spacing threshold of 0.75, resulting in a BASF value of 0.174(2). The Rint value given is for all reflections before the cutoff at d = 0.75 and is based on agreement between observed single and composite intensities and those calculated from refined unique intensities and twin fractions (TWINABS (Sheldrick, 2007)). ; _diffrn_ambient_temperature 100(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker AXS SMART APEX CCD diffractometer' _diffrn_measurement_method '\w scans' _diffrn_detector_area_resol_mean ? _diffrn_standards_number 0 _diffrn_standards_interval_count . _diffrn_standards_interval_time . _diffrn_standards_decay_% ? _diffrn_reflns_number 7858 _diffrn_reflns_av_R_equivalents 0.0589 _diffrn_reflns_av_sigmaI/netI 0.0364 _diffrn_reflns_limit_h_min -5 _diffrn_reflns_limit_h_max 5 _diffrn_reflns_limit_k_min -13 _diffrn_reflns_limit_k_max 13 _diffrn_reflns_limit_l_min 0 _diffrn_reflns_limit_l_max 16 _diffrn_reflns_theta_min 1.74 _diffrn_reflns_theta_max 28.28 _reflns_number_total 2342 _reflns_number_gt 2129 _reflns_threshold_expression I>2\s(I) _computing_data_collection 'SMART 5.630 (Bruker, 1997-2002)' _computing_cell_refinement 'SAINT+ 6.45 (Bruker, 2003)' _computing_data_reduction 'SAINT+ 6.45' _computing_structure_solution 'SHELXTL 6.14 (Bruker, 2000-2003)' _computing_structure_refinement 'SHELXTL 6.14' _computing_molecular_graphics 'SHELXTL 6.14' _computing_publication_material 'SHELXTL 6.14' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.1248P)^2^+8.3865P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 2342 _refine_ls_number_parameters 103 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0673 _refine_ls_R_factor_gt 0.0619 _refine_ls_wR_factor_ref 0.1797 _refine_ls_wR_factor_gt 0.1731 _refine_ls_goodness_of_fit_ref 1.080 _refine_ls_restrained_S_all 1.080 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Br1 Br 0.2372(4) 0.67443(15) -0.03032(13) 0.0215(3) Uani 1 1 d . . . Br2 Br 1.2237(4) 1.04411(15) 0.16433(13) 0.0214(3) Uani 1 1 d . . . C1 C 0.592(4) 0.6258(14) 0.2367(12) 0.019(3) Uani 1 1 d . . . H1 H 0.4404 0.5766 0.1688 0.022 Uiso 1 1 calc R . . C2 C 0.619(4) 0.5687(15) 0.3269(12) 0.020(3) Uani 1 1 d . . . C3 C 0.414(5) 0.4275(17) 0.3147(13) 0.030(4) Uani 1 1 d . . . H3A H 0.5627 0.3618 0.2992 0.044 Uiso 1 1 calc R . . H3B H 0.2275 0.4027 0.2515 0.044 Uiso 1 1 calc R . . H3C H 0.3206 0.4267 0.3856 0.044 Uiso 1 1 calc R . . C4 C 0.982(4) 0.8164(16) 0.3422(13) 0.021(3) Uani 1 1 d . . . H4 H 1.1167 0.9035 0.3496 0.025 Uiso 1 1 calc R . . C5 C 1.001(5) 0.7605(16) 0.4342(14) 0.025(3) Uani 1 1 d . . . C6 C 1.220(4) 0.8344(16) 0.5433(14) 0.023(3) Uani 1 1 d . . . H6A H 1.0849 0.8380 0.6061 0.035 Uiso 1 1 calc R . . H6B H 1.3174 0.9271 0.5426 0.035 Uiso 1 1 calc R . . H6C H 1.4048 0.7873 0.5536 0.035 Uiso 1 1 calc R . . Hg1 Hg 0.74434(14) 0.84629(6) 0.08008(5) 0.0207(2) Uani 1 1 d . . . N1 N 0.777(3) 0.7486(13) 0.2447(11) 0.022(3) Uani 1 1 d . . . N2 N 0.818(4) 0.6348(14) 0.4240(10) 0.021(3) Uani 1 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Br1 0.0148(7) 0.0250(7) 0.0232(7) 0.0048(6) 0.0033(5) 0.0037(5) Br2 0.0170(7) 0.0226(7) 0.0241(7) 0.0073(6) 0.0036(6) 0.0018(5) C1 0.019(7) 0.017(6) 0.016(6) 0.000(5) -0.002(6) 0.004(6) C2 0.018(7) 0.023(7) 0.016(6) 0.000(5) -0.003(5) 0.011(6) C3 0.038(10) 0.026(8) 0.016(7) 0.001(6) -0.007(7) -0.002(7) C4 0.011(6) 0.021(7) 0.023(7) 0.002(6) -0.008(5) -0.004(5) C5 0.032(9) 0.021(7) 0.030(8) 0.010(6) 0.015(7) 0.016(7) C6 0.014(7) 0.028(8) 0.024(7) 0.008(6) 0.001(6) -0.002(6) Hg1 0.0142(3) 0.0250(3) 0.0227(3) 0.0086(2) 0.0027(2) 0.0014(2) N1 0.019(6) 0.023(6) 0.025(6) 0.006(5) 0.010(5) 0.004(5) N2 0.022(6) 0.026(6) 0.016(6) 0.009(5) 0.005(5) 0.002(5) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Br1 Hg1 2.4783(16) . ? Br1 Hg1 3.0700(16) 1_455 ? Br2 Hg1 2.4800(16) . ? C1 N1 1.338(19) . ? C1 C2 1.40(2) . ? C1 H1 0.9500 . ? C2 N2 1.320(19) . ? C2 C3 1.52(2) . ? C3 H3A 0.9800 . ? C3 H3B 0.9800 . ? C3 H3C 0.9800 . ? C4 N1 1.336(19) . ? C4 C5 1.41(2) . ? C4 H4 0.9500 . ? C5 N2 1.35(2) . ? C5 C6 1.47(2) . ? C6 H6A 0.9800 . ? C6 H6B 0.9800 . ? C6 H6C 0.9800 . ? Hg1 N1 2.508(13) . ? Hg1 Br1 3.0700(16) 1_655 ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag Hg1 Br1 Hg1 92.51(5) . 1_455 ? N1 C1 C2 120.9(13) . . ? N1 C1 H1 119.6 . . ? C2 C1 H1 119.6 . . ? N2 C2 C1 121.7(14) . . ? N2 C2 C3 118.2(14) . . ? C1 C2 C3 120.1(13) . . ? C2 C3 H3A 109.5 . . ? C2 C3 H3B 109.5 . . ? H3A C3 H3B 109.5 . . ? C2 C3 H3C 109.5 . . ? H3A C3 H3C 109.5 . . ? H3B C3 H3C 109.5 . . ? N1 C4 C5 121.0(14) . . ? N1 C4 H4 119.5 . . ? C5 C4 H4 119.5 . . ? N2 C5 C4 120.3(15) . . ? N2 C5 C6 117.7(14) . . ? C4 C5 C6 122.0(14) . . ? C5 C6 H6A 109.5 . . ? C5 C6 H6B 109.5 . . ? H6A C6 H6B 109.5 . . ? C5 C6 H6C 109.5 . . ? H6A C6 H6C 109.5 . . ? H6B C6 H6C 109.5 . . ? Br1 Hg1 Br2 168.61(6) . . ? Br1 Hg1 N1 95.0(3) . . ? Br2 Hg1 N1 96.0(3) . . ? Br1 Hg1 Br1 92.51(5) . 1_655 ? Br2 Hg1 Br1 90.67(5) . 1_655 ? N1 Hg1 Br1 89.8(3) . 1_655 ? C4 N1 C1 118.1(14) . . ? C4 N1 Hg1 121.2(10) . . ? C1 N1 Hg1 120.7(10) . . ? C2 N2 C5 117.9(14) . . ? loop_ _geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag N1 C1 C2 N2 2(2) . . . . ? N1 C1 C2 C3 -178.3(15) . . . . ? N1 C4 C5 N2 2(2) . . . . ? N1 C4 C5 C6 -178.9(15) . . . . ? Hg1 Br1 Hg1 Br2 -74.0(3) 1_455 . . . ? Hg1 Br1 Hg1 N1 90.0(3) 1_455 . . . ? Hg1 Br1 Hg1 Br1 180.0 1_455 . . 1_655 ? C5 C4 N1 C1 -1(2) . . . . ? C5 C4 N1 Hg1 -179.6(11) . . . . ? C2 C1 N1 C4 -1(2) . . . . ? C2 C1 N1 Hg1 177.6(10) . . . . ? Br1 Hg1 N1 C4 -169.0(11) . . . . ? Br2 Hg1 N1 C4 7.9(12) . . . . ? Br1 Hg1 N1 C4 98.5(12) 1_655 . . . ? Br1 Hg1 N1 C1 12.0(11) . . . . ? Br2 Hg1 N1 C1 -171.2(11) . . . . ? Br1 Hg1 N1 C1 -80.5(11) 1_655 . . . ? C1 C2 N2 C5 -1(2) . . . . ? C3 C2 N2 C5 179.8(15) . . . . ? C4 C5 N2 C2 -1(2) . . . . ? C6 C5 N2 C2 179.4(15) . . . . ? _diffrn_measured_fraction_theta_max 0.971 _diffrn_reflns_theta_full 28.28 _diffrn_measured_fraction_theta_full 0.971 _refine_diff_density_max 4.100 _refine_diff_density_min -4.259 _refine_diff_density_rms 0.572 # Attachment '360-G_07mz417m.cif' data_07mz417m _database_code_depnum_ccdc_archive 'CCDC 668317' _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety ? _chemical_formula_sum 'C6 H8 Cl4 Hg2 N2' _chemical_formula_weight 651.12 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Cl Cl 0.1484 0.1585 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Hg Hg -2.3894 9.2266 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Triclinic _symmetry_space_group_name_H-M P-1 loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, -z' _cell_length_a 3.8950(13) _cell_length_b 8.146(3) _cell_length_c 9.945(3) _cell_angle_alpha 80.398(5) _cell_angle_beta 86.387(5) _cell_angle_gamma 80.858(6) _cell_volume 306.96(17) _cell_formula_units_Z 1 _cell_measurement_temperature 100(2) _cell_measurement_reflns_used 3305 _cell_measurement_theta_min 2.57 _cell_measurement_theta_max 30.46 _exptl_crystal_description block _exptl_crystal_colour colourless _exptl_crystal_size_max 0.15 _exptl_crystal_size_mid 0.10 _exptl_crystal_size_min 0.07 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 3.522 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 286 _exptl_absorpt_coefficient_mu 25.810 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_correction_T_min 0.036 _exptl_absorpt_correction_T_max 0.164 _exptl_absorpt_process_details 'SADABS (Sheldrick, 2007)' _exptl_special_details ; ? ; _diffrn_ambient_temperature 100(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker AXS SMART APEX CCD diffractometer' _diffrn_measurement_method '\w scans' _diffrn_detector_area_resol_mean ? _diffrn_standards_number 0 _diffrn_standards_interval_count . _diffrn_standards_interval_time . _diffrn_standards_decay_% ? _diffrn_reflns_number 2871 _diffrn_reflns_av_R_equivalents 0.0397 _diffrn_reflns_av_sigmaI/netI 0.0550 _diffrn_reflns_limit_h_min -5 _diffrn_reflns_limit_h_max 5 _diffrn_reflns_limit_k_min -10 _diffrn_reflns_limit_k_max 10 _diffrn_reflns_limit_l_min -13 _diffrn_reflns_limit_l_max 13 _diffrn_reflns_theta_min 2.08 _diffrn_reflns_theta_max 28.28 _reflns_number_total 1489 _reflns_number_gt 1412 _reflns_threshold_expression I>2\s(I) _computing_data_collection 'SMART 5.630 (Bruker, 1997-2002)' _computing_cell_refinement 'SAINT+ 6.45 (Bruker, 2003)' _computing_data_reduction 'SAINT+ 6.45' _computing_structure_solution 'SHELXTL 6.14 (Bruker, 2000-2003)' _computing_structure_refinement 'SHELXTL 6.14' _computing_molecular_graphics 'SHELXTL 6.14' _computing_publication_material 'SHELXTL 6.14' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0998P)^2^+20.2385P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 1489 _refine_ls_number_parameters 65 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0656 _refine_ls_R_factor_gt 0.0636 _refine_ls_wR_factor_ref 0.1789 _refine_ls_wR_factor_gt 0.1774 _refine_ls_goodness_of_fit_ref 1.112 _refine_ls_restrained_S_all 1.112 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group C1 C -0.048(4) 0.847(2) -0.007(2) 0.024(4) Uani 1 1 d . . . H1 H -0.0887 0.7373 -0.0141 0.028 Uiso 1 1 calc R . . C2 C -0.075(4) 0.964(2) -0.1215(17) 0.017(3) Uani 1 1 d . . . C3 C -0.146(5) 0.922(2) -0.2609(19) 0.022(4) Uani 1 1 d . . . H3A H -0.2520 0.8184 -0.2475 0.034 Uiso 1 1 calc R . . H3B H 0.0731 0.9048 -0.3143 0.034 Uiso 1 1 calc R . . H3C H -0.3053 1.0146 -0.3098 0.034 Uiso 1 1 calc R . . Cl1 Cl 0.5888(11) 0.4885(5) 0.1811(4) 0.0192(8) Uani 1 1 d . . . Cl2 Cl -0.2876(11) 0.7171(5) 0.4682(4) 0.0190(8) Uani 1 1 d . . . Hg1 Hg 0.13674(15) 0.62524(7) 0.30848(6) 0.0172(3) Uani 1 1 d . . . N1 N 0.033(4) 0.8759(18) 0.1151(14) 0.017(3) Uani 1 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 C1 0.013(7) 0.022(8) 0.034(10) 0.003(7) 0.005(7) -0.005(6) C2 0.012(7) 0.025(8) 0.013(7) 0.001(6) -0.006(6) -0.001(6) C3 0.019(8) 0.026(9) 0.020(8) 0.004(7) -0.009(6) 0.001(7) Cl1 0.0179(17) 0.0201(18) 0.0185(18) -0.0002(14) 0.0039(14) -0.0044(14) Cl2 0.0180(17) 0.0192(18) 0.0170(18) 0.0020(14) -0.0006(14) 0.0004(14) Hg1 0.0146(4) 0.0185(4) 0.0161(4) 0.0037(2) 0.0001(2) -0.0026(2) N1 0.024(7) 0.014(6) 0.009(6) 0.004(5) -0.005(5) -0.002(5) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag C1 N1 1.34(3) . ? C1 C2 1.35(2) . ? C1 H1 0.9500 . ? C2 N1 1.35(2) 2_575 ? C2 C3 1.54(2) . ? C3 H3A 0.9800 . ? C3 H3B 0.9800 . ? C3 H3C 0.9800 . ? Cl1 Hg1 2.348(4) . ? Cl2 Hg1 2.343(4) . ? Hg1 N1 2.561(13) . ? N1 C2 1.35(2) 2_575 ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag N1 C1 C2 124.7(18) . . ? N1 C1 H1 117.6 . . ? C2 C1 H1 117.6 . . ? N1 C2 C1 119.6(16) 2_575 . ? N1 C2 C3 117.9(14) 2_575 . ? C1 C2 C3 122.5(17) . . ? C2 C3 H3A 109.5 . . ? C2 C3 H3B 109.5 . . ? H3A C3 H3B 109.5 . . ? C2 C3 H3C 109.5 . . ? H3A C3 H3C 109.5 . . ? H3B C3 H3C 109.5 . . ? Cl2 Hg1 Cl1 169.01(15) . . ? Cl2 Hg1 N1 99.4(3) . . ? Cl1 Hg1 N1 91.6(3) . . ? C1 N1 C2 115.6(14) . 2_575 ? C1 N1 Hg1 118.4(12) . . ? C2 N1 Hg1 125.8(10) 2_575 . ? loop_ _geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag N1 C1 C2 N1 -3(3) . . . 2_575 ? N1 C1 C2 C3 176.3(16) . . . . ? C2 C1 N1 C2 3(3) . . . 2_575 ? C2 C1 N1 Hg1 -173.0(14) . . . . ? Cl2 Hg1 N1 C1 -121.8(12) . . . . ? Cl1 Hg1 N1 C1 58.5(12) . . . . ? Cl2 Hg1 N1 C2 62.9(14) . . . 2_575 ? Cl1 Hg1 N1 C2 -116.7(13) . . . 2_575 ? _diffrn_measured_fraction_theta_max 0.973 _diffrn_reflns_theta_full 28.28 _diffrn_measured_fraction_theta_full 0.973 _refine_diff_density_max 8.068 _refine_diff_density_min -4.035 _refine_diff_density_rms 0.701 # Attachment '361-G_07mz408m.cif' data_07mz408m _database_code_depnum_ccdc_archive 'CCDC 668318' _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety ? _chemical_formula_sum 'C8 H8 Hg N4 S2' _chemical_formula_weight 424.91 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' S S 0.1246 0.1234 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Hg Hg -2.3894 9.2266 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Orthorhombic _symmetry_space_group_name_H-M Fdd2 loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, z' 'x+1/4, -y+1/4, z+1/4' '-x+1/4, y+1/4, z+1/4' 'x, y+1/2, z+1/2' '-x, -y+1/2, z+1/2' 'x+1/4, -y+3/4, z+3/4' '-x+1/4, y+3/4, z+3/4' 'x+1/2, y, z+1/2' '-x+1/2, -y, z+1/2' 'x+3/4, -y+1/4, z+3/4' '-x+3/4, y+1/4, z+3/4' 'x+1/2, y+1/2, z' '-x+1/2, -y+1/2, z' 'x+3/4, -y+3/4, z+1/4' '-x+3/4, y+3/4, z+1/4' _cell_length_a 12.8459(12) _cell_length_b 21.180(2) _cell_length_c 8.3837(8) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 2281.0(4) _cell_formula_units_Z 8 _cell_measurement_temperature 100(2) _cell_measurement_reflns_used 2810 _cell_measurement_theta_min 3.06 _cell_measurement_theta_max 30.42 _exptl_crystal_description block _exptl_crystal_colour colourless _exptl_crystal_size_max 0.31 _exptl_crystal_size_mid 0.20 _exptl_crystal_size_min 0.20 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 2.475 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 1568 _exptl_absorpt_coefficient_mu 13.832 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_correction_T_min 0.041 _exptl_absorpt_correction_T_max 0.063 _exptl_absorpt_process_details 'SADABS (Sheldrick, 2007)' _exptl_special_details ; ? ; _diffrn_ambient_temperature 100(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker AXS SMART APEX CCD diffractometer' _diffrn_measurement_method '\w scans' _diffrn_detector_area_resol_mean ? _diffrn_standards_number 0 _diffrn_standards_interval_count . _diffrn_standards_interval_time . _diffrn_standards_decay_% ? _diffrn_reflns_number 2853 _diffrn_reflns_av_R_equivalents 0.0228 _diffrn_reflns_av_sigmaI/netI 0.0438 _diffrn_reflns_limit_h_min -17 _diffrn_reflns_limit_h_max 8 _diffrn_reflns_limit_k_min -28 _diffrn_reflns_limit_k_max 25 _diffrn_reflns_limit_l_min -11 _diffrn_reflns_limit_l_max 9 _diffrn_reflns_theta_min 3.06 _diffrn_reflns_theta_max 28.28 _reflns_number_total 1311 _reflns_number_gt 1250 _reflns_threshold_expression I>2\s(I) _computing_data_collection 'SMART 5.630 (Bruker, 1997-2002)' _computing_cell_refinement 'SAINT+ 6.45 (Bruker, 2003)' _computing_data_reduction 'SAINT+ 6.45' _computing_structure_solution 'SHELXTL 6.14 (Bruker, 2000-2003)' _computing_structure_refinement 'SHELXTL 6.14' _computing_molecular_graphics 'SHELXTL 6.14' _computing_publication_material 'SHELXTL 6.14' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)]' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, 876-881, 558 Friedel pairs' _refine_ls_abs_structure_Flack 0.009(12) _refine_ls_number_reflns 1311 _refine_ls_number_parameters 71 _refine_ls_number_restraints 1 _refine_ls_R_factor_all 0.0192 _refine_ls_R_factor_gt 0.0181 _refine_ls_wR_factor_ref 0.0403 _refine_ls_wR_factor_gt 0.0396 _refine_ls_goodness_of_fit_ref 0.914 _refine_ls_restrained_S_all 0.913 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group C1 C 0.9457(3) 0.17372(19) 1.2416(5) 0.0144(8) Uani 1 1 d . . . C2 C 0.7927(4) 0.2971(2) 0.7163(5) 0.0161(9) Uani 1 1 d . . . H2 H 0.8252 0.3310 0.7716 0.019 Uiso 1 1 calc R . . C3 C 0.7914(3) 0.2984(2) 0.5500(5) 0.0129(8) Uani 1 1 d . . . C4 C 0.8340(4) 0.3532(2) 0.4606(5) 0.0187(9) Uani 1 1 d . . . H4A H 0.8938 0.3395 0.3966 0.028 Uiso 1 1 calc R . . H4B H 0.8563 0.3859 0.5360 0.028 Uiso 1 1 calc R . . H4C H 0.7801 0.3704 0.3901 0.028 Uiso 1 1 calc R . . Hg1 Hg 0.7500 0.2500 1.12387(9) 0.01524(7) Uani 1 2 d S . . N1 N 0.9588(3) 0.12929(18) 1.3161(4) 0.0210(8) Uani 1 1 d . . . N2 N 0.7500 0.2500 0.8018(13) 0.0122(19) Uani 1 2 d S . . N3 N 0.7500 0.2500 0.4694(13) 0.0131(19) Uani 1 2 d S . . S2 S 0.93563(8) 0.23892(4) 1.1269(3) 0.01844(19) Uani 1 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 C1 0.012(2) 0.015(2) 0.0162(17) -0.0048(15) 0.0000(15) 0.0014(15) C2 0.016(2) 0.015(2) 0.0175(18) 0.0003(16) 0.0002(16) 0.0025(18) C3 0.009(2) 0.015(2) 0.0149(17) 0.0013(15) -0.0003(15) 0.0010(17) C4 0.023(2) 0.014(2) 0.0192(19) 0.0017(15) -0.0028(17) -0.0032(18) Hg1 0.01353(10) 0.01523(10) 0.01697(9) 0.000 0.000 0.00267(8) N1 0.024(2) 0.020(2) 0.0196(16) 0.0033(14) 0.0019(15) 0.0053(16) N2 0.011(4) 0.014(4) 0.012(4) 0.000 0.000 0.0029(17) N3 0.012(4) 0.017(4) 0.010(4) 0.000 0.000 0.0000(17) S2 0.0126(4) 0.0197(5) 0.0230(5) 0.0057(8) 0.0031(6) 0.0013(4) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag C1 N1 1.142(5) . ? C1 S2 1.688(4) . ? C2 N2 1.346(8) . ? C2 C3 1.395(5) . ? C2 H2 0.9500 . ? C3 N3 1.338(7) . ? C3 C4 1.487(6) . ? C4 H4A 0.9800 . ? C4 H4B 0.9800 . ? C4 H4C 0.9800 . ? Hg1 S2 2.3962(10) 14_655 ? Hg1 S2 2.3962(10) . ? Hg1 N2 2.700(11) . ? N2 C2 1.346(8) 14_655 ? N3 C3 1.338(7) 14_655 ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag N1 C1 S2 175.8(4) . . ? N2 C2 C3 122.8(6) . . ? N2 C2 H2 118.6 . . ? C3 C2 H2 118.6 . . ? N3 C3 C2 119.7(6) . . ? N3 C3 C4 119.4(5) . . ? C2 C3 C4 121.0(4) . . ? C3 C4 H4A 109.5 . . ? C3 C4 H4B 109.5 . . ? H4A C4 H4B 109.5 . . ? C3 C4 H4C 109.5 . . ? H4A C4 H4C 109.5 . . ? H4B C4 H4C 109.5 . . ? S2 Hg1 S2 178.77(12) 14_655 . ? S2 Hg1 N2 90.61(6) 14_655 . ? S2 Hg1 N2 90.61(6) . . ? C2 N2 C2 115.6(9) 14_655 . ? C2 N2 Hg1 122.2(5) 14_655 . ? C2 N2 Hg1 122.2(5) . . ? C3 N3 C3 119.3(9) . 14_655 ? C1 S2 Hg1 99.37(15) . . ? loop_ _geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag N2 C2 C3 N3 -2.8(7) . . . . ? N2 C2 C3 C4 176.4(3) . . . . ? C3 C2 N2 C2 1.4(4) . . . 14_655 ? C3 C2 N2 Hg1 -178.6(4) . . . . ? S2 Hg1 N2 C2 -66.8(2) 14_655 . . 14_655 ? S2 Hg1 N2 C2 113.2(2) . . . 14_655 ? S2 Hg1 N2 C2 113.2(2) 14_655 . . . ? S2 Hg1 N2 C2 -66.8(2) . . . . ? C2 C3 N3 C3 1.3(3) . . . 14_655 ? C4 C3 N3 C3 -177.8(5) . . . 14_655 ? N2 Hg1 S2 C1 -125.13(16) . . . . ? _diffrn_measured_fraction_theta_max 1.000 _diffrn_reflns_theta_full 28.28 _diffrn_measured_fraction_theta_full 1.000 _refine_diff_density_max 0.800 _refine_diff_density_min -0.762 _refine_diff_density_rms 0.128