# Electronic Supplementary Material (ESI) for CrystEngComm # This journal is (c) The Royal Society of Chemistry 2009 data_global _journal_name_full CrystEngComm _journal_coden_Cambridge 1350 _publ_contact_author_name 'Andrzej Katrusiak' _publ_contact_author_email KATRAN@AMU.EDU.PL _publ_section_title ; High-pressure crystal structure of methyl iodide: molecular aggregation in the crystals of halomethanes and their isostructural relations ; loop_ _publ_author_name 'Andrzej Katrusiak' 'Marcin Podsiadlo' # Attachment 'im_cif.txt' data_1jm_0.53GPa _database_code_depnum_ccdc_archive 'CCDC 717992' # CHEMICAL DATA _audit_creation_method SHELXL-97 _chemical_name_systematic ; iodomethane ; _chemical_name_common iodomethane _chemical_melting_point 209 _chemical_formula_moiety 'C1 H3 I1' _chemical_formula_sum 'C H3 I' _chemical_formula_weight 141.93 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' I I -0.4742 1.8119 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' # CRYSTAL DATA _symmetry_cell_setting orthorhombic _symmetry_space_group_name_H-M 'P n m a' _symmetry_space_group_name_Hall '-P 2ac 2n' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, -y, z+1/2' '-x, y+1/2, -z' 'x+1/2, -y+1/2, -z+1/2' '-x, -y, -z' 'x-1/2, y, -z-1/2' 'x, -y-1/2, z' '-x-1/2, y-1/2, z-1/2' _cell_length_a 4.4968(9) _cell_length_b 6.8417(14) _cell_length_c 9.941(2) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 305.83(11) _cell_formula_units_Z 4 _cell_measurement_temperature 295(2) _cell_measurement_reflns_used 2291 _cell_measurement_theta_min 3.62 _cell_measurement_theta_max 29.69 _exptl_crystal_description cylinder _exptl_crystal_colour colourless _exptl_crystal_size_max 0.40 _exptl_crystal_size_mid 0.24 _exptl_crystal_size_min 0.08 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 3.083 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 248 _exptl_absorpt_coefficient_mu 10.128 _exptl_absorpt_correction_type numerical _exptl_absorpt_correction_T_min 0.20 _exptl_absorpt_correction_T_max 0.40 _exptl_absorpt_process_details ; Correction for absorption of the diamond-anvil cell and the sample were made using program REDSHABS (Katrusiak, A. (2003) REDSHABS. Adam Mickiewicz University Pozna\'n; Katrusiak, A. (2004) Z. Kristallogr. 219, 461-467). ; # EXPERIMENTAL DATA _exptl_special_details ; Data were collected at room temperature and pressure of 0.53(5) GPa (530000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line. ; _diffrn_ambient_temperature 295(2) _diffrn_ambient_environment 'diamond-anvil cell' _diffrn_ambient_pressure 530000 _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'KM-4 CCD' _diffrn_measurement_method '\f- and \w-scans' _diffrn_detector_area_resol_mean ? _diffrn_standards_number 0 _diffrn_standards_interval_count 0 _diffrn_standards_interval_time ? _diffrn_standards_decay_% 0 _diffrn_reflns_number 2291 _diffrn_reflns_av_R_equivalents 0.1327 _diffrn_reflns_av_sigmaI/netI 0.0365 _diffrn_reflns_limit_h_min -6 _diffrn_reflns_limit_h_max 6 _diffrn_reflns_limit_k_min -6 _diffrn_reflns_limit_k_max 6 _diffrn_reflns_limit_l_min -11 _diffrn_reflns_limit_l_max 11 _diffrn_reflns_theta_min 3.62 _diffrn_reflns_theta_max 29.69 _reflns_number_total 205 _reflns_number_gt 187 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'CrysAlisCCD (Oxford Diffraction, 2004)' _computing_cell_refinement 'CrysAlisRED (Oxford Diffraction, 2004)' _computing_data_reduction 'CrysAlisRED (Oxford Diffraction, 2004); REDSHABS (Katrusiak, A. 2003)' _computing_structure_solution 'SHELXS--97 (Sheldrick, 1997)' _computing_structure_refinement 'SHELXL--97 (Sheldrick, 1997)' _computing_molecular_graphics 'SHELXTL (Sheldrick, 1990)' _computing_publication_material 'SHELXL--97 (Sheldrick, 1997)' # REFINEMENT DATA _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The DAC imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0376P)^2^+0.0000P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment mixed _refine_ls_extinction_method SHELXL _refine_ls_extinction_coef 0.193(12) _refine_ls_extinction_expression Fc^*^=kFc[1+0.001xFc^2^\l^3^/sin(2\q)]^-1/4^ _refine_ls_number_reflns 205 _refine_ls_number_parameters 15 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0276 _refine_ls_R_factor_gt 0.0247 _refine_ls_wR_factor_ref 0.0639 _refine_ls_wR_factor_gt 0.0631 _refine_ls_goodness_of_fit_ref 1.145 _refine_ls_restrained_S_all 1.145 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 # ATOMIC COORDINATES AND DISPLACEMENT PARAMETERS loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group I1 I 0.15596(10) 0.2500 0.09464(5) 0.0509(4) Uani 1 2 d S . . C1 C 0.345(2) 0.2500 -0.1018(8) 0.060(3) Uani 1 2 d S . . H11 H 0.3524 0.1186 -0.1354 0.072 Uiso 0.50 1 calc PR . . H12 H 0.5424 0.3028 -0.0980 0.072 Uiso 0.50 1 calc PR . . H13 H 0.2248 0.3286 -0.1605 0.072 Uiso 0.50 1 calc PR . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 I1 0.0517(5) 0.0526(9) 0.0485(8) 0.000 -0.00215(19) 0.000 C1 0.065(6) 0.051(14) 0.065(13) 0.000 0.003(3) 0.000 # MOLECULAR GEOMETRY _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag I1 C1 2.129(8) . ? C1 H11 0.9600 . ? C1 H12 0.9600 . ? C1 H13 0.9600 . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag I1 C1 H11 109.5 . . ? I1 C1 H12 109.5 . . ? H11 C1 H12 109.5 . . ? I1 C1 H13 109.5 . . ? H11 C1 H13 109.5 . . ? H12 C1 H13 109.5 . . ? _diffrn_measured_fraction_theta_max 0.435 _diffrn_reflns_theta_full 29.69 _diffrn_measured_fraction_theta_full 0.435 _refine_diff_density_max 0.422 _refine_diff_density_min -0.528 _refine_diff_density_rms 0.114 data_2jm_1.16GPa _database_code_depnum_ccdc_archive 'CCDC 717993' # CHEMICAL DATA _audit_creation_method SHELXL-97 _chemical_name_systematic ; iodomethane ; _chemical_name_common iodomethane _chemical_melting_point 209 _chemical_formula_moiety 'C1 H3 I1' _chemical_formula_sum 'C H3 I' _chemical_formula_weight 141.93 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' I I -0.4742 1.8119 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' # CRYSTAL DATA _symmetry_cell_setting orthorhombic _symmetry_space_group_name_H-M 'P n m a' _symmetry_space_group_name_Hall '-P 2ac 2n' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, -y, z+1/2' '-x, y+1/2, -z' 'x+1/2, -y+1/2, -z+1/2' '-x, -y, -z' 'x-1/2, y, -z-1/2' 'x, -y-1/2, z' '-x-1/2, y-1/2, z-1/2' _cell_length_a 4.3643(9) _cell_length_b 6.6826(13) _cell_length_c 9.773(2) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 285.04(10) _cell_formula_units_Z 4 _cell_measurement_temperature 295(2) _cell_measurement_reflns_used 2115 _cell_measurement_theta_min 3.69 _cell_measurement_theta_max 29.60 _exptl_crystal_description cylinder _exptl_crystal_colour colourless _exptl_crystal_size_max 0.40 _exptl_crystal_size_mid 0.35 _exptl_crystal_size_min 0.07 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 3.307 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 248 _exptl_absorpt_coefficient_mu 10.866 _exptl_absorpt_correction_type numerical _exptl_absorpt_correction_T_min 0.17 _exptl_absorpt_correction_T_max 0.35 _exptl_absorpt_process_details ; Correction for absorption of the diamond-anvil cell and the sample were made using program REDSHABS (Katrusiak, A. (2003) REDSHABS. Adam Mickiewicz University Pozna\'n; Katrusiak, A. (2004) Z. Kristallogr. 219, 461-467). ; # EXPERIMENTAL DATA _exptl_special_details ; Data were collected at room temperature and pressure of 1.16(5) GPa (1160000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line. ; _diffrn_ambient_temperature 295(2) _diffrn_ambient_environment 'diamond-anvil cell' _diffrn_ambient_pressure 1160000 _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'KM-4 CCD' _diffrn_measurement_method '\f- and \w-scans' _diffrn_detector_area_resol_mean ? _diffrn_standards_number 0 _diffrn_standards_interval_count 0 _diffrn_standards_interval_time ? _diffrn_standards_decay_% 0 _diffrn_reflns_number 2115 _diffrn_reflns_av_R_equivalents 0.0454 _diffrn_reflns_av_sigmaI/netI 0.0141 _diffrn_reflns_limit_h_min -6 _diffrn_reflns_limit_h_max 5 _diffrn_reflns_limit_k_min -6 _diffrn_reflns_limit_k_max 6 _diffrn_reflns_limit_l_min -11 _diffrn_reflns_limit_l_max 11 _diffrn_reflns_theta_min 3.69 _diffrn_reflns_theta_max 29.60 _reflns_number_total 194 _reflns_number_gt 187 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'CrysAlisCCD (Oxford Diffraction, 2004)' _computing_cell_refinement 'CrysAlisRED (Oxford Diffraction, 2004)' _computing_data_reduction 'CrysAlisRED (Oxford Diffraction, 2004); REDSHABS (Katrusiak, A. 2003)' _computing_structure_solution 'SHELXS--97 (Sheldrick, 1997)' _computing_structure_refinement 'SHELXL--97 (Sheldrick, 1997)' _computing_molecular_graphics 'SHELXTL (Sheldrick, 1990)' _computing_publication_material 'SHELXL--97 (Sheldrick, 1997)' # REFINEMENT DATA _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The DAC imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0270P)^2^+0.3233P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment mixed _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 194 _refine_ls_number_parameters 14 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0215 _refine_ls_R_factor_gt 0.0197 _refine_ls_wR_factor_ref 0.0489 _refine_ls_wR_factor_gt 0.0478 _refine_ls_goodness_of_fit_ref 1.178 _refine_ls_restrained_S_all 1.178 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 # ATOMIC COORDINATES AND DISPLACEMENT PARAMETERS loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group I1 I 0.15436(8) 0.2500 0.09476(4) 0.0363(2) Uani 1 2 d S . . C1 C 0.3500(16) 0.2500 -0.1046(7) 0.043(2) Uani 1 2 d S . . H11 H 0.5572 0.2976 -0.0998 0.051 Uiso 0.50 1 calc PR . . H12 H 0.2326 0.3360 -0.1633 0.051 Uiso 0.50 1 calc PR . . H13 H 0.3483 0.1164 -0.1407 0.051 Uiso 0.50 1 calc PR . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 I1 0.0385(3) 0.0372(7) 0.0332(5) 0.000 -0.00138(15) 0.000 C1 0.051(4) 0.040(11) 0.038(8) 0.000 0.001(3) 0.000 # MOLECULAR GEOMETRY _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag I1 C1 2.127(7) . ? C1 H11 0.9600 . ? C1 H12 0.9600 . ? C1 H13 0.9600 . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag I1 C1 H11 109.5 . . ? I1 C1 H12 109.5 . . ? H11 C1 H12 109.5 . . ? I1 C1 H13 109.5 . . ? H11 C1 H13 109.5 . . ? H12 C1 H13 109.5 . . ? _diffrn_measured_fraction_theta_max 0.449 _diffrn_reflns_theta_full 29.60 _diffrn_measured_fraction_theta_full 0.449 _refine_diff_density_max 0.400 _refine_diff_density_min -0.568 _refine_diff_density_rms 0.110 data_3jm_met_2.53GPa _database_code_depnum_ccdc_archive 'CCDC 717994' # CHEMICAL DATA _audit_creation_method SHELXL-97 _chemical_name_systematic ; iodomethane ; _chemical_name_common iodomethane _chemical_melting_point 209 _chemical_formula_moiety 'C1 H3 I1' _chemical_formula_sum 'C H3 I' _chemical_formula_weight 141.93 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' I I -0.4742 1.8119 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' # CRYSTAL DATA _symmetry_cell_setting orthorhombic _symmetry_space_group_name_H-M 'P n m a' _symmetry_space_group_name_Hall '-P 2ac 2n' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, -y, z+1/2' '-x, y+1/2, -z' 'x+1/2, -y+1/2, -z+1/2' '-x, -y, -z' 'x-1/2, y, -z-1/2' 'x, -y-1/2, z' '-x-1/2, y-1/2, z-1/2' _cell_length_a 4.2676(10) _cell_length_b 6.572(10) _cell_length_c 9.611(6) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 269.5(4) _cell_formula_units_Z 4 _cell_measurement_temperature 295(2) _cell_measurement_reflns_used 1217 _cell_measurement_theta_min 4.24 _cell_measurement_theta_max 28.29 _exptl_crystal_description cylinder _exptl_crystal_colour colourless _exptl_crystal_size_max 0.32 _exptl_crystal_size_mid 0.14 _exptl_crystal_size_min 0.08 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 3.498 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 248 _exptl_absorpt_coefficient_mu 11.492 _exptl_absorpt_correction_type numerical _exptl_absorpt_correction_T_min 0.28 _exptl_absorpt_correction_T_max 0.39 _exptl_absorpt_process_details ; Correction for absorption of the diamond-anvil cell and the sample were made using program REDSHABS (Katrusiak, A. (2003) REDSHABS. Adam Mickiewicz University Pozna\'n; Katrusiak, A. (2004) Z. Kristallogr. 219, 461-467). ; # EXPERIMENTAL DATA _exptl_special_details ; Data were collected at room temperature and pressure of 2.53(5) GPa (2530000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line. ; _diffrn_ambient_temperature 295(2) _diffrn_ambient_environment 'diamond-anvil cell' _diffrn_ambient_pressure 2530000 _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'KM-4 CCD' _diffrn_measurement_method '\f- and \w-scans' _diffrn_detector_area_resol_mean ? _diffrn_standards_number 0 _diffrn_standards_interval_count 0 _diffrn_standards_interval_time ? _diffrn_standards_decay_% 0 _diffrn_reflns_number 1217 _diffrn_reflns_av_R_equivalents 0.1830 _diffrn_reflns_av_sigmaI/netI 0.0474 _diffrn_reflns_limit_h_min -5 _diffrn_reflns_limit_h_max 5 _diffrn_reflns_limit_k_min -2 _diffrn_reflns_limit_k_max 2 _diffrn_reflns_limit_l_min -12 _diffrn_reflns_limit_l_max 12 _diffrn_reflns_theta_min 4.24 _diffrn_reflns_theta_max 28.29 _reflns_number_total 94 _reflns_number_gt 89 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'CrysAlisCCD (Oxford Diffraction, 2004)' _computing_cell_refinement 'CrysAlisRED (Oxford Diffraction, 2004)' _computing_data_reduction 'CrysAlisRED (Oxford Diffraction, 2004); REDSHABS (Katrusiak, A. 2003)' _computing_structure_solution 'SHELXS--97 (Sheldrick, 1997)' _computing_structure_refinement 'SHELXL--97 (Sheldrick, 1997)' _computing_molecular_graphics 'SHELXTL (Sheldrick, 1990)' _computing_publication_material 'SHELXL--97 (Sheldrick, 1997)' # REFINEMENT DATA _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The DAC imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0373P)^2^+1.9485P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment mixed _refine_ls_extinction_method SHELXL _refine_ls_extinction_coef 0.012(5) _refine_ls_extinction_expression Fc^*^=kFc[1+0.001xFc^2^\l^3^/sin(2\q)]^-1/4^ _refine_ls_number_reflns 94 _refine_ls_number_parameters 12 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0435 _refine_ls_R_factor_gt 0.0418 _refine_ls_wR_factor_ref 0.0857 _refine_ls_wR_factor_gt 0.0827 _refine_ls_goodness_of_fit_ref 1.131 _refine_ls_restrained_S_all 1.131 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 # ATOMIC COORDINATES AND DISPLACEMENT PARAMETERS loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group I1 I 0.1552(3) 0.2500 0.09487(13) 0.065(4) Uani 1 2 d S . . C1 C 0.338(7) 0.2500 -0.100(2) 0.060(8) Uiso 1 2 d S . . H11 H 0.3034 0.3804 -0.1421 0.072 Uiso 0.50 1 calc PR . . H12 H 0.2376 0.1464 -0.1543 0.072 Uiso 0.50 1 calc PR . . H13 H 0.5586 0.2233 -0.0949 0.072 Uiso 0.50 1 calc PR . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 I1 0.0503(11) 0.099(13) 0.0450(11) 0.000 -0.0003(5) 0.000 # MOLECULAR GEOMETRY _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag I1 C1 2.03(2) . ? C1 H11 0.9600 . ? C1 H12 0.9600 . ? C1 H13 0.9600 . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag I1 C1 H11 109.5 . . ? I1 C1 H12 109.5 . . ? H11 C1 H12 109.5 . . ? I1 C1 H13 109.5 . . ? H11 C1 H13 109.5 . . ? H12 C1 H13 109.5 . . ? _diffrn_measured_fraction_theta_max 0.259 _diffrn_reflns_theta_full 28.29 _diffrn_measured_fraction_theta_full 0.259 _refine_diff_density_max 0.491 _refine_diff_density_min -0.476 _refine_diff_density_rms 0.132