Electronic Supplementary Information (ESI)

for

Crystal engineering by eliminating weak hydrogen bonding sites in phenolic polyene nonlinear optical crystals

O-Pil Kwon,* Mojca Jazbinsek,* Hoseop Yun, Jung-In Seo, Ji-Youn Seo, Seong-Ji Kwon, YoonSup

1

Lee, Peter Günter

1. Synthesis

OH3 materials was prepared by by Knoevenagel condensations. ¹H NMR (CD₃OD, δ): 2.14(2H, s, -CH₂), 2.69 (2H, s, -CH₂-), 2.79 (2H, s, -CH₂-), 6.78 (1H, s, -C=CH-), 6.78-6.81 (2H, d, *J* = 8.7 Hz, Ar-H), 6.92-6.98 (1H, d, *J* = 18 Hz, -CH=CH-), 7.16-7.22 (1H, d, *J* = 18 Hz, -CH=CH-), 7.46-7.49 (2H, d, *J* = 8.7 Hz, Ar-H).

2. Single crystal structure of OH3

C₁₇H₁₄ON₂: M_r = 262.31, monoclinic, space group *Cc*, *a* = 10.9927(8) Å, *b* = 12.5852(9) Å, *c* = 10.1326(6) Å, β = 94.364(2)°, V = 1397.7(2) Å³, Z = 4, T = 290(2) K, crystal dimension 0.40x0.30x0.20 mm³, µ(MoKα)=0.079 mm⁻¹. Of 6705 reflections collected in the θ range 3.10°-27.5° using an ω scans on a Rigaku R-axis Rapid S diffractometer, 1599 were unique reflections (R_{int}=0.015, completeness=99.9 %). The C16 atom is described with a positional disorder model because of the subtle ellipsoids stretch and peaks in the difference Fourier map. The structure was solved and refined against F² using SHELX97 [Sheldrick, G. M. (2008) *Acta Crystallogr. A64*, 112-122], 2 restraints, 192 variables, *wR*₂=0.1132, *R*₁=0.0345 (F₀² > 2σ(F₀²)), GOF=1.119, and max/min residual electron density 0.215/-0.107 eÅ⁻³, CCDC-682357.

Figure S1. Crystal packing diagram of OH1 and OH3 crystal projected to the *bc* and *ac* crystallographic plane, respectively. The polar molecular chains (shaded) are oriented along the [013] and $[0\overline{1}3]$ crystallographic directions in OH1, and along [103] in OH3 crystals. Main intrermolecular hydrogenbond interactions are indicated: strong –OH…NC– hydrogen bonds (thick black dotted lines), weak – CH…NC– hydrogen bonds (mid blue dotted lines), and weak –CH…OH hydrogen bonds (thin red dotted lines). Hydrogen bonds A–H…B indicated in this figure exhibit a bond angle between 140° and 180°.

3

Electronic Supplementary Material for CrystEngComm This journal is (c) The Royal Society of Chemistry 2009

3. Computational Details

3.1. Microscopic Polarizabilities and First Hyperpolarizabilities β

Table S1. Results of the finite-field (FF) method calculated with the experimental (EXP) molecular structures determined by the X-ray diffraction analysis, at B3LYP/6-311+G* level: dipole moments μ_g (D), static polarizability α_{ij} (×10⁻²⁵ esu), the zero-frequency hyperpolarizability tensor β_{ijk} (×10⁻³⁰ esu), the vector component β_z along the dipole moment direction of the hyperpolarizability tensor β_{ijk} (×10⁻³⁰ esu), the maximal first-order hyperpolarizability β_{max} (×10⁻³⁰ esu) and the angle $\theta(\mu,\beta)$ (deg.) between the dipole moments μ_g and the main direction of the first-order hyperpolarizability β_{max} .

	OH1	OH3
	(EXP)	(EXP)
$\mu_g \left(=-\mu_z\right)$	10.96	11.70
α_{xx}	190.07	163.26
$lpha_{xy}$	15.37	4.26
$lpha_{_{yy}}$	454.21	421.03
$\alpha_{_{xz}}$	-10.81	-7.73
$lpha_{_{yz}}$	-206.12	-205.92
α_{zz}	668.50	662.35
β_{xxx}	-0.07	-0.12
eta_{xxy}	-0.23	-0.04
$oldsymbol{eta}_{xyy}$	-1.52	-0.68
$oldsymbol{eta}_{yyy}$	-24.31	-22.26
$\beta_{_{xxz}}$	-0.37	-0.44
$eta_{\scriptscriptstyle xyz}$	1.90	0.57
$oldsymbol{eta}_{yyz}$	30.87	30.03
$eta_{_{xzz}}$	-2.30	-0.98
$eta_{_{yzz}}$	-35.54	-33.24
β_{zzz}	36.13	30.93
β_z	66.63	60.52
β_{max}	92.57	86.2
θ(μ,β)	41.6	42.4

4

3.2. Relative Second-Order Susceptibilities $\chi^{(2)}$ in the Oriented-Gas Model

The relation between the macroscopic $\chi^{(2)}$ coefficients and the microscopic nonlinearities β can be estimated using the oriented-gas model [J. Zyss, J. L. Oudar, *Phys. Rev. A*, **1982**, *26*, 2028], e.g. for second-harmonic generation

$$\chi_{ijk}^{(2)}(-2\omega,\omega,\omega) = N f_i^{2\omega} f_j^{\omega} f_k^{\omega} \beta_{ijk}^{\text{eff}}(-2\omega,\omega,\omega).$$
(S1)

The effective β_{ijk}^{eff} coefficients can be calculated form the hyperpolarizability tensor components β_{mnp} as

$$\beta_{ijk}^{\text{eff}} = \frac{1}{n(g)} \sum_{s}^{n(g)} \sum_{s=mnp}^{3} \cos(\theta_{im}^{s}) \cos(\theta_{jn}^{s}) \cos(\theta_{kp}^{s}) \beta_{mnp}, \qquad (S2)$$

where n(g) is the number of equivalent positions in the unit cell, *s* denotes a site in the unit cell, and θ_{im}^{s} is the angle between the Cartesian axis *i* and the molecular axis *m*. The distinguishable components of β_{ijk}^{eff} in the Cartesian system are listed in Table S2 for OH1 and OH3, and were calculated by Equation (S2) considering the full three-dimensional hyperpolarizability tensor β_{ijk} given in Table S1. Due to the point group symmetry *mm*2 of OH1 and *m* of OH3 crystals, the Cartesian system *XYZ*, in which the components in Table S2 are given, matches the crystallographic system *abc* for OH1 and is oriented as illustrated in Figure S2 for OH3 crystals.

Table S2. The dispersion-free components of the effective hyperpolarizability tensor $\beta_{ijk}^{\text{eff}} \propto \chi_{ijk}^{(2)}$ (1 0⁻³⁰ esu) for OH1 and OH3 in the Cartesian system *XYZ*.

OH1	$oldsymbol{eta}_{333}^{ m eff}$	$oldsymbol{eta}_{322}^{ ext{eff}}$	$oldsymbol{eta}_{311}^{ ext{eff}}$				
	63.2	7.2	8.7				
OH3	$oldsymbol{eta}_{333}^{ ext{eff}}$	$oldsymbol{eta}_{322}^{ ext{eff}}$	$oldsymbol{eta}_{311}^{ ext{eff}}$	$oldsymbol{eta}_{133}^{ ext{eff}}$	$oldsymbol{eta}_{ ext{122}}^{ ext{eff}}$	$eta_{133}^{ ext{eff}}$	
	79.2	1.2	-0.4	0.0	0.5	0.0	

Figure S2. Crystal packing diagram of OH3 crystals projected to the plane containing the charge transfer axis and the *b*-axis (a) and to the *ac* mirror symmetry plane (b). The angle between the main charge-transfer axis of the crystal and the hyperpolarizabilities β_{max} of the molecules is $\theta = 13.0^{\circ}$. The Cartesian system *XYZ* is chosen so that *Y* is parallel to the *b* crystallographic axis and *Z* parallel to the main charge-transfer axis of the crystal, which is rotated by $\psi \approx 20^{\circ}$ from the crystallographic *c* axis.

6