Supplementary Information

for the article entitled

MMH-2 AS A NEW APPROACH FOR THE PREDICTION OF INTERMOLECULAR INTERACTIONS: THE CRYSTAL PACKING OF ACETAMIDE

Edelsys Codorniu-Hernández^{*}, A. Daniel Boese, Carsten Schauerte, Alberto Rolo-Naranjo, Ramón Miranda-Quintana, Luis A. Montero-Cabrera, Roland Boese

A brief outline of MMH procedures

An appropriate generator of random molecular geometries initially generates a set of n molecular cluster configurations, starting from the independently optimized structures of both interacting molecules. Such clusters are fully optimized by standard gradient path minimization, using a semiempirical Hamiltonian in our case. It produces a set of typical cells of local minima in the molecular interaction configuration space. The energy, *i*, of every *i*th cell of the ensemble is thus obtained. Our attention is focused on finding a reduced set of cells that can represent the most significant contributions to the *i*th state for the whole system. After selecting those cells, we will have model structures for the most important clusters of intermolecular interactions, with real statistical significance because of the previous exploration of the whole space of atomic configurations. Then we can use a Boltzmann distribution to calculate the thermally averaged state of the typical macroscopic system at room temperature. In any case, a partition function should be calculated assuming the appropriate energy scale with respect to a reference value. For this purpose, a conventional state has to be chosen for calculating such reference energy. We can define such a state to exclude all interaction energies among constituent molecules in a given cluster. This means that we consider the translational, rotational, and vibrational states of molecules in the clusters as identical to those in the reference states. Therefore, the association process is considered to be isothermal. In this case, the reference state is taken as a set with the same number of non interacting molecules of the same kind, so that the sum of their total energies is taken as the reference value on our energy scale. Thus, in the reference state q=1.

Accordingly, the *cell* energy with respect to the new reference scale, $\Delta \varepsilon_i$ is:

$$\Delta \varepsilon_i = \varepsilon_i - \varepsilon^{ref}$$

where:

$$\varepsilon^{ref} = \varepsilon_{tot(solute)} + n\varepsilon_{tot(solvent)}$$

Consequently, the molecular partition function in such reference scale is:

$$q^* = \sum g_i e^{-(\Delta \varepsilon_{i/} RT)} = q e^{\varepsilon^{ref} RT}$$

Therefore, using common statistical equations we can obtain important thermodynamic quantities of the molecular association process such as: the association energy (E^{assoc}), the association entropy (S^{assoc}), and the free Helmholtz association energy (A^{assoc}) (Eqs. 10-12).

$$E^{assoc} = E - E^{ref} = RT^2 \frac{q}{q^*}$$

$$S^{assoc} = S - S^{ref} = R \ln q^* + \frac{E^{assoc}}{T}$$

$$A^{assoc} = A - A^{ref} = -RT \ln q^*$$

Note that this approach can provide, at the same time, important model structures of solute–solvent cluster interactions and energies for these interactions with true statistical significance.

Full author reference 28

⁽²⁸⁾ Gaussian 03, Revision C.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A.; Gaussian, Inc., Wallingford CT, 2004.

MMH-1/AM1

Figure S2. Population of states and configuration energy of acetamide dimers

calculated by MMH-1/AM1

Electronic Supplementary Material for CrystEngComm This journal is (c) The Royal Society of Chemistry 2009

Figure S3. Acetamide structural motifs found by MMH-1/AM1

Figure S4. Superimposed experimental and predicted acetamide dimer structures obtained by MMH-1/AM1

Additional results comparing MMH-2/AM1 with MP2 and DFT calculations

Table S1. Different orientation	s of acetamide dimer	rs after the full	optimization
---------------------------------	----------------------	-------------------	--------------

METHO D	dı	d ₂	d ₃	d4
EXP	XX	XX	44	+ +

Table S2. Different orientations of acetamide trimers after the full optimization

Configuration		Orientation results from different methods				
t ₁	EXP					
	MMH-2/AM1					

	MP2-aug´-cc- pVTZ	the second secon
	CP2K(HCTH120/ TZPV)	
t ₂	ЕХР	チケ
	MMH-2/AM1	イン
	MP2-aug´-cc- pVTZ	イイ
	CP2K(HCTH120/ TZPV)	

Electronic Supplementary Material for CrystEngComm This journal is (c) The Royal Society of Chemistry 2009

	CP2K(HCTH120/	
	TZPV)	
	EXP	イナナ
	MMH-2/AM1	メイ
t ₆	MP2-aug´-cc- pVTZ	イイ
	CP2K(HCTH120/ TZPV)	イイイ

Figure S5. Superimposed experimental and predicted structures (MMH-2/AM1) of acetamide tetramers

 Table S3. Orientations of acetamide tetramers related with ACEMID06 by different methods

	Exp	イイイイ
qı	MMH-2/AM1	イヤイ
	MP2/aug'-cc-pVTZ	A H

q2	Exp	メメメ
	MMH-2/AM1	* * * *
	MP2/aug'-cc-pVTZ	オメ
q 3	Exp	イイ
	MMH-2/AM1	ドイ
	MP2/aug'-cc-pVTZ	イイイ
q4	ЕХР	オオキ

Table S4. Orientations of acetamide pentamers related with ACEMID06 by different methods

p1	MMH-2/AM1	オイイネト
	EXP	イイトト
	MP2-aug´-cc-pVDZ	XXXX
p 2	MMH-2/AM1	イイナイ
	ЕХР	イナイナイ

 Table S5. Orientations of acetamide hexamers related with ACEMID06 by different

 methods

\mathbf{h}_1	MMH-2/AM1	+	4	Y	\checkmark	X	7
	EXP	Ţ	+	Ţ	+	T,	+

	MP2/aug'-cc- pVDZ	
h ₂	MMH-2/AM1	メンヤンヤン
	EXP	イナイナイナ
h3	MMH-2/AM1	イヤイ
	EXP	イイイ
	MP2/aug'-cc- pVDZ	イイイ

Table S6. Geometrical parameters experimental and theoretical acetamide pentamers

Conf	d _(H-bond) (Å)	Exp.	MMH-	MP2/aug-
			2/AM1	cc-pVTZ

Electronic Supplementary Material for CrystEngComm This journal is (c) The Royal Society of Chemistry 2009

	CONH ₂	2.01	2.17	
	CONH ₂	2.01	2.14	
\mathbf{p}_1	CONH ₂	2.01	2.14	N/A
	CONH ₂	2.01	2.14	
	COCH ₃	3.02	2.38	
	CONH ₂	1.87	2.17	
	CONH ₂	1.87	2.14	
p ₂	CONH ₂	1.87	2.14	N/A
	CONH ₂	1.87	2.15	
	CO—CH ₃	2.92	2.38	
	CONH ₂	2.05	2.04	1.85
	CONH ₂	2.02	2.13	1.90
-	COCH ₃	3.93	2.29	2.63
p 3	CONH ₂	4.12	2.15	2.04
	CONH ₂	2.05	2.14	1.87
	CONH ₂	2.02	2.04	1.94

Table S7. Geometrical parameters experimental and theoretical acetamide hexamers

Conf	d _(H-bond) (Å)	Exp.	MMH-	MP2/aug-
			2/AM1	cc-pVTZ
h ₁	CO NH	2.01	2.17	
	$CO - NII_2$	2.01	2.14	
	$CONH_2$	2.01	2.14	27/4
	CONH ₂	2.01	2.14	N/A
	CONH ₂	2.01	2.13	
	COCH ₃	3.02	2.38	
		1.87	2.17	
	CONH ₂	1.87	2.14	
	CONH ₂	1.87	2.14	
h ₂	CONH ₂	1 87	2 1 5	N/A
	CONH ₂	1.87	2.16	
	CO—CH ₃	2.92	2.38	
h3	CONH ₂	2.09	2.15	2.06
	CONH ₂	2.09	2.14	2.05
	CONH ₂	2.05	2.04	1.73
	CONH ₂	2.02	2.12	1.90
	CONH ₂	2.05	2.13	1.93
	CONH ₂	2.02	2.14	1.75
	CONH ₂	2.01	2.19	1.84

	CONH ₂	2.01	2.17	1.93
h4	CONH ₂	2.02	2.22	1.87
	CONH ₂	2.01	2.06	1.90
	CONH ₂	2.09	2.19	1.92
	CONH ₂	2.02	2.09	1.87
	CONH ₂	2.01	2.17	1.90
	COCH ₃	-	2.29	2.60
	NH ₂ NH ₂	2.76	2.37	1.96

Table S8. Orientations of tetramers related with ACEMID 03 by different methods

Figure S6. Superimposed experimental $(C_{2,2}(8))$ and predicted structure of one calculated pentamer

	MMH-2/AM1	
p 4	ЕХР	
	MP2/aug´-cc-pVDZ	

Table S9. Orientations of pentamers related with ACEMID 03 by different methods

Table S10. Geometries of pentamers by different methodologies

Config	d _(H-bond) (Å)	Exp.	MMH-	MP2/aug'-
			2/AM1	cc-pVDZ
	COCH _{3 all}	3.02	2.35	1.89
	CONH _{2 (1)}	2.01	2.17	2.27
P4	CONH _{2 (2)}	2.01	2.14	2.26
	CONH _{2 (3)}	2.01	2.14	2.27
	CONH ₂₍₁₎	1.86	2.14	
	CONH _{2 (2)}	1.89	2.17	
p 5	CONH _{2 (3)}	1.86	2.14	
	CONH _{2 (3)}	1.89	2.17	

Table S11. Orientations of hexamers related with ACEMID 03 by different methods

 Table S12. Geometries of hexamers by different methodologies

Config	d _(H-bond) (Å)	Exp.	MMH-	MP2/aug'-
Config			2/AM1	cc-pVTZ
	COCH _{3 all}	3.02	2.35	1.89
h	CONH ₂₍₁₎	2.01	2.17	2.27
115	CONH _{2 (2)}	2.01	2.14	2.26
	CONH _{2 (3)}	2.01	2.14	2.27
	CONH ₂₍₁₎	1.87	2 16	2.01
	CONH _{2 (2)}	1.89	2.10	1.95
	CONH _{2 (3)}	1.86	2.16	2.01
h ₆	$CONH_{2(4)}$	1.89	2.22	1.95
	CONH _{2 (5)}	1.86	2.16	2.01
	CONH _{2 (6)}	1.89	2.22	1.95