Charlotte Allen,<sup>a</sup> Delia A. Haynes,<sup>b\*</sup> Christopher M. Pask<sup>a</sup> and Jeremy M. Rawson<sup>a\*</sup>

#### **Electronic Supplementary Information**

### Synthesis of [PhCNSSN]<sub>2</sub>, (1)<sub>2</sub>

Benzonitrile (4 g, 38.7 mmol) was added to a solution of  $\text{Li}[N(\text{SiMe}_3)_2]$  (6.31 g, 37.7 mmol) in dry ether (50 ml). The straw-coloured reaction mixture was stirred for 18 h at room temperature, cooled to 0°C and SCl<sub>2</sub> (7.5 ml, 94.4 mmol) added. The reaction was allowed to warm to room temperature and stirred for 3 hours. The resultant yellow precipitate of [PhCNSSN]Cl (contaminated with LiCl) was filtered, washed with dry ether (2 x 20ml) and dried *in vacuo*.

Zinc powder (2 g , 30.6 mmol) was added to a suspension of the crude [PhCNSSN]Cl in dry THF (50 ml). The reaction mixture was stirred for 18 h at room temperature during which time the solution turned dark purple. The solvent was removed *in vacuo* and the resultant dark residue was sublimed at 100-120 °C onto a water-cooled cold finger *in vacuo* (10<sup>-1</sup> Torr) to yield [PhCNSSN]<sub>2</sub> as green-black needles (1.1 g, 6.07 mmol, 16%). Found C: 45.7%, H: 2.7%, N 15.2% (Calc. for  $C_7H_5N_2S_2$  C: 46.4%, H: 2.8%, N 15.5%). EPR (298 K, CH<sub>2</sub>Cl<sub>2</sub>): quintet (g = 2.007,  $a_N = 5.0$  G).

Charlotte Allen,<sup>a</sup> Delia A. Haynes,<sup>b\*</sup> Christopher M. Pask<sup>a</sup> and Jeremy M. Rawson<sup>a\*</sup>

#### **Electronic Supplementary Information**

#### Synthesis of [C<sub>6</sub>F<sub>5</sub>CNSSN]<sub>2</sub>, (2)<sub>2</sub>

Pentafluorobenzonitrile (3.13 g, 16.2 mmol) was added to a solution of  $\text{Li}[N(\text{SiMe}_3)_2]$  (2.71 g, 16.2 mmol) in dry ether (40 ml). The straw-coloured reaction mixture was stirred for 18 hours at room temperature. The solution was cooled to 0 °C and SCl<sub>2</sub> (3.1 ml, 39.0 mmol) added. The reaction was allowed to warm to room temperature and stirred for 24 hours. The resultant orange precipitate of [C<sub>6</sub>F<sub>5</sub>CNSSN]Cl (contaminated with LiCl) was filtered, washed with dry ether (2 x 20 ml) and dried *in vacuo*. Yield (unpurified): 4.30 g, 14.0 mmol, 87%.

A sample of crude [C<sub>6</sub>F<sub>5</sub>CNSSN]Cl (500 mg, 1.63 mmol) and Ag powder (0.186 g, 1.72 mmol) were placed in one limb of a two-limbed reaction vessel. Liquid SO<sub>2</sub> (ca. 8 ml) was condensed onto the mixture and the reaction stirred for 18 h at room temperature. The resultant dark purple solution was filtered off and the insoluble material washed with back-condensed SO<sub>2</sub> until the washings were near colourless. The SO<sub>2</sub> removed to yield a purple residue which was sublimed (100°C, 10<sup>-1</sup> Torr) to yield 0.150 g (34%) of (C<sub>6</sub>F<sub>5</sub>CNSSN)<sub>2</sub>. Found C: 31.2%, H: 0.0%, N: 10.5% (Calc. for C<sub>7</sub>F<sub>5</sub>N<sub>2</sub>S<sub>2</sub> C: 31.0%, H: 0.0%, N: 10.3%). EPR (CCl<sub>4</sub>/dry ice, THF): quintet (g = 2.008, a<sub>N</sub> = 5.2 G).

NB Reduction was also successfully undertaken with Zn powder in *l*. SO<sub>2</sub> offering a unoptimised yield of 0.06g, 14%. Slow sublimation (50 – 30 °C, 10<sup>-1</sup> Torr) yielded well-faceted crystals of (2)<sub>2</sub> suitable for X-ray diffraction.

Charlotte Allen,<sup>a</sup> Delia A. Haynes,<sup>b\*</sup> Christopher M. Pask<sup>a</sup> and Jeremy M. Rawson<sup>a\*</sup>

#### **Electronic Supplementary Information**

#### Preparation of [PhCNSSN][C<sub>6</sub>F<sub>5</sub>CNSSN], 3

(1)<sub>2</sub> (0.025 g, 0.007 mmol) and (2)<sub>2</sub> (0.037 g, 0.007 mmol) were ground together and then sublimed at 70 – 30°C (10<sup>-1</sup> Torr) to yield red crystals of **3** whose habit was different from (2)<sub>2</sub> (Recovered yield 17 mg, 27%). Found C: 36.7%, H: 1.3%, N 12.5% (Calc for  $C_{14}H_5F_5N_4S_4$  C: 37.2%, H: 1.1%, N 12.4%). EPR (THF, 298 K) quintet (g = 2.008, a<sub>N</sub> = 5.1G) [The very close similarity in g-values and hyperfine coupling for both **1** and **2** did not allow the two components to be resolved in the EPR spectrum].

Charlotte Allen,<sup>a</sup> Delia A. Haynes,<sup>b\*</sup> Christopher M. Pask<sup>a</sup> and Jeremy M. Rawson<sup>a\*</sup>

### **Electronic Supplementary Information**

|               | 1                    | 2                      | 3                                     |                      |  |
|---------------|----------------------|------------------------|---------------------------------------|----------------------|--|
| Bond length/Å |                      |                        | [C <sub>6</sub> F <sub>5</sub> CNSSN] | [PhCNSSN]            |  |
| S-S           | 2.090(2)             | 2.0924(5)              | 2.0967(7)                             | 2.0842(7)            |  |
|               | 2.088(2)             |                        |                                       |                      |  |
|               | 2.081(2)             |                        |                                       |                      |  |
|               | 2.090(2)             |                        |                                       |                      |  |
| S-N           | 1.646(3)             | 1.637(1)               | 1.627(2)                              | 1.631(2)             |  |
|               | 1.625(3)             | 1.634(1)               | 1.629(2)                              | 1.636(1)             |  |
|               | 1.617(3)             |                        |                                       |                      |  |
|               | 1.615(3)             |                        |                                       |                      |  |
|               | 1.623(3)             |                        |                                       |                      |  |
|               | 1.631(4)             |                        |                                       |                      |  |
|               | 1.631(3)             |                        |                                       |                      |  |
|               | 1.620(3)             |                        |                                       |                      |  |
| C-N           | 1.355(6)             | 1.336(2)               | 1.334(2)                              | 1.334(2)             |  |
|               | 1.345(6)             | 1.333(2)               | 1.337(2)                              | 1.341(2)             |  |
|               | 1.384(6)             |                        |                                       |                      |  |
|               | 1.324(6)             |                        |                                       |                      |  |
|               | 1.361(6)             |                        |                                       |                      |  |
|               | 1.333(6)             |                        |                                       |                      |  |
|               | 1.343(6)             |                        |                                       |                      |  |
| D 1 A 1. /9   | 1.333(6)             |                        |                                       |                      |  |
| Bond Angle/*  | 100.0(1)             | 100 0(1)               | 100 0(1)                              | 100 5(1)             |  |
| NCN           | 122.2(4)             | 123.8(1)               | 122.8(1)                              | 122.5(1)             |  |
|               | 121.8(4)             |                        |                                       |                      |  |
|               | 121.9(4)             |                        |                                       |                      |  |
| CNIC          | 122.4(4)             | 112 (0(0)              | 114 7(1)                              | 112 0(1)             |  |
| CNS           | 114.1(3)<br>112.0(2) | 113.00(9)<br>112.22(0) | 114.2(1)<br>114.2(1)                  | 113.9(1)<br>114.4(1) |  |
|               | 113.9(3)<br>114.4(3) | 113.32(9)              | 114.3(1)                              | 114.4(1)             |  |
|               | 114.4(3)<br>115.0(3) |                        |                                       |                      |  |
|               | 113.0(3)<br>113.5(3) |                        |                                       |                      |  |
|               | 113.3(3)<br>114.4(3) |                        |                                       |                      |  |
|               | 114.4(3)<br>112.9(3) |                        |                                       |                      |  |
|               | 112.9(3)<br>115.2(3) |                        |                                       |                      |  |
| NSS           | 94 9(1)              | 94 53(4)               | 94 51(6)                              | 94 61(5)             |  |
|               | 94 8(1)              | 94 67(4)               | 94 24(6)                              | 94 57(6)             |  |
|               | 94 3(1)              | <i>y</i> 1.07(1)       | ) 1. <u>2</u> 1(0)                    | 91.87(0)             |  |
|               | 94.5(1)              |                        |                                       |                      |  |
|               | 94.7(1)              |                        |                                       |                      |  |
|               | 95.0(1)              |                        |                                       |                      |  |
|               | 95.4(1)              |                        |                                       |                      |  |
|               | 94.5(1)              |                        |                                       |                      |  |

## Comparison of Heterocyclic Bond lengths and Angles in 1-3

Electronic Supplementary Material (ESI) for *CrystEngComm* This journal is © The Royal Society of Chemistry 2009

# Co-crystallisation of thiazyl radicals: Preparation and crystal structure of [PhCNSSN][C<sub>6</sub>F<sub>5</sub>CNSSN].

Charlotte Allen,<sup>a</sup> Delia A. Haynes,<sup>b\*</sup> Christopher M. Pask<sup>a</sup> and Jeremy M. Rawson<sup>a\*</sup>

#### **Electronic Supplementary Information**

Superimposed structures of (1)<sub>2</sub> and 3 , emphasizing the similarity of intermolecular S... $\pi$ /S...N contacts.



Superimposed structures of  $(2)_2$  and 3, emphasizing the similarity of intermolecular in-plane S...N contacts.



Charlotte Allen,<sup>a</sup> Delia A. Haynes,<sup>b\*</sup> Christopher M. Pask<sup>a</sup> and Jeremy M. Rawson<sup>a\*</sup>

### DFT Studies on 1 and 2

Molecular electrostatic isopotential surfaces for both **1** and **2** were initially determined at the semi-empirical (PM3) level using Quantum Cache running on a desktop Pentium PC.<sup>1</sup> Subsequent DFT studies (pBP/LSDA/DN\*) within Spartan Pro<sup>2</sup> running under Windows XP yielded similar frontier molecular orbitals and isopotential surfaces to the semi-empirical methods. [The DN\* basis set is broadly equivalent to 6-31G\*].

<sup>1.</sup> Quantum Cache, version 5.0, Fujitsu Co. Tokyo, Japan, 2001.

<sup>2.</sup> Spartan Pro, Wavefunction Inc., 18401, Von Karman Avenue, Suite 370, Irvine, CA 92612, USA. [JMR would like to thank Prof J.K.M. Sanders for use of this software].