Salts and cocrystals of chloranilic acid with organic bases; is it possible to predict a salt formation?

Supplement data

Krešimir Molčanov and Biserka Kojić-Prodić*

Rudjer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia E-mail: kojic@irb.hr

Contents

- S1 Crystal structure of [2-MePyNa]CA·H₂O
- S2 Crystal strucutre of (2,6-Me-4-NH₂-Py)₂CA·5H₂O
- S3 Crystal structure of 2-MePyCl ·H₂CA·H₂O
- S4 Crystallographic data of (2,6-Me-4-NH₂-Py)₂CA·5H₂O and 2-MePyCl·H₂CA·H₂O
- S5 References

S1 Crystal structure of [2-MePyNa]CA·H₂O

The sodium cation revelas penta-coordination in which chloranilate dianions serve as bridging groups (Fig. S1/1) forming an infinite polymeric ribbon whereas the apical position occupies a water molecule (Fig. S1/2).

Fig. S1/1 The asymmetric unit of [2-MePyNa]CA·H₂O. Sodium cation is surrounded by four oxgen atoms from two dianions and a water molecule completing a pentacoordination. Atomic displacement ellipsoids are drawn at the 50 % probability level and hydrogen atoms are depicted as spheres of arbitrary radii.

Fig. S1/2 Chains of alternating sodium cations and chloranilate dianions are hydrogen bonded using O–H···O interactions between water molecule and chloranilate dianions; 2methylpyridinium cations are hydrogen bonded to water molecule by N⁺–H···O. Packing is completed by C–H···O and C–H···Cl hydrogen bonds. Symmetry codes: *i*) 1 - x, 1 - y, 1 - z; *ii*) x, 1 + y, z.

S2 Crystal strucutre of (2,6-Me-4-NH₂-Py)₂CA·5H₂O

In the structure of 2,6-dimethyl-4-aminopyrimidinium pentahydrate (Fig. S2/1), five water molecules generate intensive hydrogen bonding layers (Table S2) parallel to $(\bar{1}01)$ described by graph-set notation: four-membered ring $R_4^4(8)$, a six-membered ring of a chair-shape, $R_6^4(12)$, and a seven-membered ring of a chair-shape, $R_7^6(14)$. Graph-set descriptors of hydrogen bonded water molecule clusters organized into layers according to the nomenclature introduced by Infantes *et al.*¹ is L4(6)6(8)7(7) (Fig. 18 in the article), where L denotes the two-dimensional hydrogen bonding network of water cluster. This network is realized by four symmetry-independent water molecules whereas the fifth one (O6) is attached as a pendant (acceptor) to O3. To the best of our knowledge, no L4(6)6(8)7(7) water layers have been reported or found in the CSD^{1,2}.

Fig. S2/1 The asymmetric unit of (2,6-Me-4-NH₂-Py)₂CA·5H₂O. Atomic displacement ellipsoids are drawn at the 50% probability level and hydrogen atoms are depicted as spheres of arbitrary radii.

Fig. S2/2 Crystal packing of (2,6-Me-4-NH₂-Py)₂CA·5H₂O viewed in the direction [101]. Although the structure is layered, the planar ions are shifted and there are no π ··· π interactions.

S3 Crystal strucutre of 2-MePyClH₂CA·H₂O

In the cocrystal of 2-MePyCl·H₂CA·H₂O (Fig. S3/1) water molecule modifies hydrogen bonding sequence using its double donor functionality and connects acid molecule and the unit Cl⁻···H–N⁺ into the hydrogen bonding sequence O–H···O(–H···Cl⁻ ···H–N⁺)₂ (Fig. S3/2, Table S1) in the form of 1D-infinite ribbons in the direction [100].

Fig. S3/1 The asymmetric unit in the cocrystal of 2-methylpyridinium chloride monohydrate with chloranilic acid. Atomic displacement ellipsoids are drawn at the 50 % probability level and hydrogen atoms are depicted as spheres of arbitrary radii.

Fig. S3/2 Infinite ribbons of $[(2-MePy)_2Cl_2(H_2O)_2H_2CA]$ units in the monohydrate of cocrystal of 2-methylpyridinium chloride with chloranilic acid.

	d(<i>D</i> -H)/Å	d(H…A)/Å	d(<i>D</i> … <i>A</i>)/Å	$(D-\mathrm{H}\cdots A)/^{\circ}$	Symm. op. on A		
[2-MePyNa]CA·H ₂ O							
N1 ⁺ -H1O5	0.90 (3)	1.88 (3)	2.764 (2)	167 (2)	1-x, 1-y, 2-z		
O5-H5A…O1	0.90(2)	1.87 (2)	2.725 (2)	158 (2)	1 + x, y, z		
O5-H5B…O4	0.91 (2)	1.92 (2)	2.753 (2)	151 (2)	1 + x, y, z		
С8-Н8…ОЗ	0,90 (3)	2.57 (3)	3.334 (2)	143 (2)	1 + x, y, z		
С9-Н9…ОЗ	0.96 (3)	2.26 (3)	3.178 (3)	160 (2)	2 - x, -y, 2 - z		
C11-H11…Cl1	0.96 (3)	2.82 (3)	2.754 (2)	165 (2)	-1 + x, $1 + y$, $1 + z$		
(2,6-Me ₂ -4-H ₂ Py) ₂ CA·5H ₂ O							
N1 ⁺ -H1…O7	0.90 (4)	1.94 (4)	2.830(3)	171 (2)	<i>x</i> , <i>y</i> , <i>z</i>		
N3-H3A…N2	0.86 (5)	2.18 (5)	3.043 (4)	177 (3)	$-x, y, \frac{1}{2} - z$		
N3-H3B…O6	0.85 (2)	2.15 (2)	2.964 (2)	162 (2)	$\frac{1}{2} - x, \frac{1}{2} - y, 1 - z$		
O3-H3A…O6	0.93 (4)	1.93 (4)	2.849 (3)	170 (2)	$x, 1-y, \frac{1}{2}+z$		
O3-H3B…O7	0.92 (8)	1.86 (7)	2.781 (4)	172 (4)	$\frac{1}{2} - x, \frac{1}{2} - y, 1 - z$		
O4-H4A…O3	0.92 (2)	1.83 (2)	2.738 (2)	167 (6)	<i>x</i> , <i>y</i> , <i>z</i>		
O4-H4B…O5	0.91 (5)	1.93 (3)	2.807 (2)	161 (6)	<i>x</i> , <i>y</i> , <i>z</i>		
O5-H5A…O1	0.90 (5)	1.84 (5)	2.733 (3)	175 (3)	<i>x</i> , <i>y</i> , <i>z</i>		
O5-H5B…O4	0.94 (5)	1.88 (5)	2.814 (3)	175 (3)	-x, 1-y, 1-z		
O6-H6A…O2	0.92 (5)	1.96 (5)	2.872 (4)	168 (3)	<i>x</i> , <i>y</i> , <i>z</i>		
O6-H6B…O1	0.90(2)	2.12 (4)	2.911 (2)	147 (4)	$\frac{1}{2} - x, \ \frac{3}{2} - y, \ 1 - z$		
O6-H6B…O2	0.90(2)	2.33 (3)	3.062 (2)	138 (4)	$\frac{1}{2} - x, \ \frac{3}{2} - y, \ 1 - z$		
07 - H7A…O4	0.94 (2)	1.89 (3)	2.795 (2)	162 (4)	$x, -y, -\frac{1}{2} + z$		
O7-H7B…O5	0.93 (3)	1.80(3)	2.737 (3)	172 (4)	$x, 1-y, -\frac{1}{2}+z$		
C6-H6B…O2	0.93	2.57	3.417 (2)	152	$\frac{1}{2} - x, \frac{1}{2} - y, 1 - z$		
С9-Н9В…О1	0.96	2.52	3.306 (2)	139	$\frac{1}{2} - x, \frac{1}{2} - y, 1 - z$		
C9-H9D…O1	0.96	2.50	3.306 (2)	142	$\frac{1}{2} - x, \frac{1}{2} - y, 1 - z$		
2-MePyCl·H ₂ CA·H ₂ O							
$N1^+-H1\cdots Cl2^-$	0.85 (2)	2.22 (2)	3.056(1)	169 (2)	<i>x</i> , <i>y</i> , <i>z</i>		
O2-H2…O3	0.88 (3)	1.69 (3)	2.531 (1)	162 (3)	<i>x</i> , <i>y</i> , <i>z</i>		
O3-H3A···Cl2	0.85 (2)	2.32 (3)	3.127 (1)	160 (2)	$-\frac{1}{2} - x$, $-\frac{1}{2} + y$, $3/2 - z$		
O3-H3B····Cl2 ⁻	0.87 (2)	2.22 (2)	3.094 (1)	176 (2)	$\frac{1}{2} - x, -\frac{1}{2} + y, 3/2 - z$		
С5-Н5…ОЗ	0.92 (2)	2.55 (2)	3.465 (2)	169 (5)	$3/2 - x$, $\frac{1}{2} - y$, $3/2 - z$		
С7-Н7…О1	0.94 (2)	2.58 (2)	3.145 (2)	122 (2)	<i>x</i> , <i>y</i> , <i>z</i>		
C6-H6…Cl1	0.95 (2)	2.90 (2)	3.580(2)	130 (2)	$3/2 + x$, $\frac{1}{2} - y$, $\frac{1}{2} + z$		

Table S1 Geometric parameters of hydrogen bonding in crystal strucutres of 2-[MePyNa]CA·H2O, (2,6-Me-4-NH2-Py)2CA·5H2O and 2-MePyCl·H2CA·H2O.

S4 Crystallographic data of [2-MePyNa]CA·H₂O (2,6-Me-4-NH₂-y)₂CA·5H₂O and 2-MePyCl·H₂CA·H2O.

Table S2 Crystallographic, data collection and structure refinement details for structures of [2-MePyNa]CA·H₂O, (2,6-Me-4-NH₂-Py)₂CA·5H₂O and 2-MePyCl·H₂CA·H₂O.

Compound	[2-MePyNa]CA·H ₂ O	(2,6-Me-4-NH ₂ -Py) ₂ CA·5H ₂ O	2-MePyCl·H ₂ CA·H ₂ O
Empirical formula	C ₁₂ H ₁₀ Cl ₂ NO ₅ Na	C ₉ H ₂₀ ClN ₃ O ₇	C ₉ H ₁₁ Cl ₂ NO ₃
Formula wt. / $g mol^{-1}$	342.11	317.72	252.09
Crystal dimensions / mm	0.22 x 0.11 x 0.06	0.28 x 0.8 x 0.05	0.18 x 0.05 x 0.03
Space group	\overline{P} 1	C 2/c	$P 2_1/n$
<i>a</i> / Å	4.9601 (2)	30.417 (4)	4.2140(1)
b / Å	8.4990 (4)	6.7259 (2)	19.9252 (4)
<i>c</i> / Å	16.4150 (7)	25.341 (4)	13.3364 (3)
α / °	88.135 (4)	90	90
β / \circ	84.817 (3)	145.35 (3)	98.591 (2)
y/°	88.068 (4)	90	90
Z	2	8	4
$V/\text{\AA}^3$	688.47 (5)	2947 (2)	1107.22 (4)
$D_{\rm calc}$ / g cm ⁻³	1.650	1.432	1.512
μ/mm^{-1}	4.764	2.636	5.195
Θ range / °	2.70 - 75.84	3.49 - 76.29	4.02 - 76.12
T/K	293 (2)	293 (2)	150 (2)
Diffractometer type	Xcalibur Nova	Xcalibur Nova	Xcalibur Nova
Range of h, k, l	-6 < h < 5;	-37 < h < 38;	-5 < h < 4;
	-10 < k < 10;	-7 < k < 8;	-25 < k < 24;
	-20 < l < 19	-31 < <i>l</i> < 31	-16 < l < 16
Reflections collected	7053	13348	10559
Independent reflections	2759	3054	2283
Observed reflections	2535	2789	2185
$(I \ge 2\sigma)$			
Absorption correction	Multi-scan	Multi-scan	Multi-scan
R _{int}	0.0171	0.0213	0.0255
R (F)	0.0318	0.0360	0.0279
$R_w(F^2)$	0.0907	0.109	0.0736
Goodness of fit	1.099	1.086	1.055
H atom treatment	Free	Mixed	Free
No. of parameters	230	233	180
$\Delta \rho_{max}, \Delta \rho_{min} (e \text{\AA}^{-3})$	0.259; -0.223	0.375; -0.184	0.343; -0.225

S5 References

- 1. L. Infantes, J. Chisholm, S. Motherwell, CrystEngComm, 2003, 5, 480-486.
- 2. M. Mascal, L. Infantes, J. Chisholm, Angew. Chem., Int. Ed., 2006, 45, 32-36.