Electronic Supplementary Information (ESI)

Controlled synthesis, structures and properties of one-, two-, and three-dimensional lanthanide coordination polymers based on (8-quinolyloxy)acetate

Jun Fan, Zhi-hong Wang, Ming Yang, Xia Yin, Wei-guang Zhang*, Zhuo-fen Huang, Rong-hua Zeng

School of Chemistry and Environment, South China Normal University, Guangzhou, 510006, P. R. China

* Corresponding author.

E-mail: wgzhang@scnu.edu.cn (W.G. Zhang).

Tel./Fax.: 86-20-39347768

Contents

Fig. S1 A 3D supramolecular network constructed by $\pi \cdots \pi$ stacking attractions in 1.

Fig. S2 A 3D supramolecular network constructed by $\pi \cdots \pi$ stacking attractions in **3**.

Fig. S3 A 3D supramolecular network constructed by $\pi \cdots \pi$ stacking attractions in 5.

Fig. S4 Schematic representation of 8-connected 3D framework in 7.

Fig. S5 TGA curves for compounds 1, 3 and 5.

Fig. S6 The H-bonding schemes in compounds 1 and 2.

Fig. S7 The H-bonding patterns in compounds 3 and 4.

Table S1. Distances (Å) and angles (°) of hydrogen bonds for

compounds 1 - 5.

Table S2. Selected bond angles (°) of compounds 1 - 7.

Electronic Supplementary Material for CrystEngComm This journal is (c) The Royal Society of Chemistry 2009

Fig. S1 A 3D supramolecular network constructed by $\pi \cdots \pi$ stacking

attractions in 1.

Fig. S2 A 3D supramolecular network constructed by $\pi \cdots \pi$ stacking

attractions in 3.

Fig. S3 A 3D supramolecular network constructed by $\pi \cdots \pi$ stacking

attractions in 5.

Fig. S4 Schematic representation of 8-connected 3D framework in 7.

Fig. S6 The H-bonding schemes in compounds 1(a) and 2(b).

(a)

(b)

Fig. S7 The H-bonding patterns in compounds 3(a) and 4(b).

(a)

(b)

Table S1. Distances (Å) and angles (°) of hydrogen bonds for compounds 1 - 5.

	D-HA	d (D-H)	d (HA)	d (DA)	\angle (DHA)	Symmetry
						equivalent operators
1	O(1w)-H(1w)O(9)	0.86	2.04	2.800(12)	146.0	
	O(1w)-H(2w)O(9)	0.85	2.40	3.042(13)	132.3	<i>x</i> , - <i>y</i> +1/2, <i>z</i> +1/2
	O(2w)-H(3w)O(9)	0.84	2.08	2.806(10)	145.0	<i>x</i> , - <i>y</i> +1/2, <i>z</i> +1/2
	O(2w)-H(4w)O(8)	0.84	1.92	2.748(8)	170.9	
	O(3w)-H(5w)O(6)	0.85	1.89	2.701(6)	159.2	<i>x, y, z+1</i>
	O(3w)-H(6w)O(1w)	0.85	1.88	2.716(8)	167.5	<i>x</i> , - <i>y</i> +1/2, <i>z</i> +1/2
2	O(1w)-H(2w)O(7)	0.86	2.21	3.055(13)	168.1	
	O(1w)-H(2w)O(9)	0.86	2.41	3.085(15)	136.4	x, -y+3/2, z-1/2
	O(2w)-H(3w)O(9)	0.85	2.33	2.809(12)	116.3	x, -1+y, z
	O(2w)-H(4w)O(7)	0.92	1.95	2.741(11)	143.0	<i>x</i> , <i>1</i> /2- <i>y</i> , <i>1</i> /2+ <i>z</i>
	O(3w)-H(5w)O(6)	0.85	1.92	2.721(8)	156.0	x, y, -l+z
	O(3w)-H(6w)O(1w)	0.85	1.93	2.693(10)	149.0	<i>x</i> , <i>1</i> /2- <i>y</i> , - <i>1</i> /2+ <i>z</i>
3	O(1w)-H(1w)O(9)	0.85	1.88	2.711(8)	163.7	<i>x</i> , <i>y</i> , 1+ <i>z</i>
	O(1w)-H(2w)O(2w)	0.85	2.14	2.667(9)	119.7	<i>x</i> , <i>y</i> , 1+ <i>z</i>
	O(2w)-H(3w)O(3w)	0.83	2.04	2.762(11)	144.8	
	O(2w)-H(4w)O(12)	0.82	1.94	2.718(10)	157.0	x,1/2-y,-1/2+z
	O(3w)-H(5w)O(9)	0.82	2.39	2.881(10)	118.8	
	O(4w)-H(7w)O(16)	0.85	2.21	2.993(10)	152.4	x, 3/2-y, -1/2+z
	O(3w)-H(6w)O(6)	0.82	2.42	2.739(10)	104.0	x, 1/2-y, -1/2+z
4	O(1w)-H(1w)O(3w)	0.85	2.01	2.673(10)	134.3	x,1/2-y,1/2+z
	O(1w)-H(2w)O(9)	0.85	1.93	2.732(10)	157.5	x,y,1+z
	O(2w)-H(3w)O(6)	0.85	2.07	2.754(13)	136.9	
	O(2w)-H(4w)O(9)	0.85	2.07	2.868(12)	156.1	x,1/2-y,1/2+z
	O(3w)-H(5w)O(2w)	0.85	1.93	2.761(13)	164.5	

Electronic Supplementary Material for CrystEngComm This journal is (c) The Royal Society of Chemistry 2009

In	This journal is (c) The Royal Society of Chemistry 2009						
	O(3w)-H(6w)O(12)	0.85	2.07	2.718(13)	132.8		
	O(4w)-H(8w)O(14)	0.85	2.31	2.988(15)	136.3		
5	O(1w)-H(1w)O(2w)	0.85	2.21	2.987(5)	152.1		
	O(2w) - H(4w)O(3)	0.85	1.98	2.823(5)	171.5	x, y-1, z	
	O(2w) –H(3w)O(7)	0.85	2.27	3.046(5)	152.5		
	O(3w)–H(5w)O(3)	0.85	1.99	2.832(7)	175.4	x, y-1, z	

Table S2. Selected bond angles (°) of compounds 1 - 7.1

$O(3)^{\#1}$ -Eu(1)-O(5)	142.23(15)	O(2w)- Eu(1)- N(1)	84.00(16)
$O(3)^{\#1}$ -Eu(1)-O(2)	78.40(14)	O(3w)- Eu(1)- N(1)	75.03(14)
O(5)-Eu(1)-O(2)	79.96(14)	N(2)- Eu(1)- N(1)	149.91(14)
$O(3)^{#1}$ -Eu(1)– $O(2w)$	139.07(15)	O(3) ^{#1} - Eu(1)- O(1)	73.48(14)
O(5)-Eu(1)- O(2w)	73.65(15)	O(5) -Eu(1)-O(1)	69.16(13)
O(2)- Eu(1)-O(2 w)	139.64(15)	O(2)- Eu(1)- O(1)	62.87(12)
$O(3)^{#1}$ -Eu(1)-O(3w)	69.73(15)	O(2w)- Eu(1)- O(1)	130.18(14)
O(5)- Eu(1)- O(3w)	139.29(14)	O(3w)- Eu(1)- O(1)	125.31(13)
O(2)- Eu(1)- O(3w)	140.53(14)	N(2)- Eu(1)- O(1)	133.87(13)
O(2w)-Eu(1)- O(3w)	69.51(14)	N(1)- Eu(1)- O(1)	60.92(13)
$O(3)^{\#1}$ –Eu(1)-N(2)	79.61(15)	$O(3)^{\#1}$ - Eu(1)- O(4)	133.28(14)
O(5) –Eu(1)- N(2)	123.86(14)	O(5)- Eu(10- O(4)	62.89(13)
O(2)- Eu(1)- N(2)	75.58(14)	O(2)- Eu(1)- O(4)	68.45(13)
O(2w)- Eu(1)- N(2)	94.36(16)	O(2w) -Eu(1) -O(4)	72.46(15)
O(3w)- Eu(1)- N(2)	76.29(15)	O(3w)- Eu(1)- O(4)	119.15(13)
$O(3)^{\#1}$ - Eu(1)- N(1)	82.12(15)	N(2)- Eu(1)- O(4)	61.23(13)
O(5)- Eu(1)- N(1)	84.61(15)	N(1)- Eu(1)- O(4)	143.84(13)
O(2) -Eu(1)- N(1)	123.61(14)	O(1)- Eu(1)- O(4)	115.54(11)
2			
$O(3)^{\#1}$ - Gd(1)-O(5)	142.3(2)	O(2w)- Gd(1)- N(2)	94.3(2)
$O(3)^{\#1}$ -Gd(1)- O(2)	78.2(2)	O(3w)- Gd(1)- N(2)	75.6(2)
O(5)- Gd(1)- O(2)	80.2(2)	N(1)- Gd(1)- N(2)	149.7(2)
$O(3)^{#1}$ -Gd(1)-O(2w)	139.2(2)	$O(3)^{\#1}$ - Gd(1)- O(1)	73.35(19)
O(5)- Gd(1)- O(2w)	73.6(2)	O(5)- Gd(1)- O(1)	69.31(19)
O(2)- Gd(1)- O(2w)	139.59(19)	O(2)- Gd(1)-O(1)	62.98(18)
		8	

Electronic Supplementary	Material for CrystEngComm
This journal is (c) The Ro	val Society of Chemistry 2000

11110 Journal 15 (•) 1110 100 Ju	sources of energy		
$O(3)^{\#1}$ - Gd(1)-O(3w)	70.0(2)	O(2w)- Gd(1)-O(1)	130.43(19)
O(5)- Gd(1)-O(3w)	139.2(2)	O(3w)-Gd(1)- O(1)	125.62(18)
O(2)- Gd(1)-O(3w)	140.25(19)	N(1)- Gd(1)- O(1)	61.20(19)
O(2w)-Gd(1)-O(3w)	69.39(19)	N(2)- Gd(1)- O(1)	133.78(19)
$O(3)^{\#1}$ - Gd(1)- N(1)	82.9(2)	$O(3)^{\#1}$ - Gd(1)- O(4)	132.92(19)
O(5)- Gd(1)- N(1)	84.1(2)	O(5)- Gd(1)- O(4)	63.10(18)
O(2)- Gd(1)- N(1)	124.0(2)	O(2)- Gd(1)- O(4)	68.29(18)
O(2w)- Gd(1)- N(1)	83.6(2)	O(2w)-Gd(1)- O(4)	72.51(18)
O(3w)- Gd(1)- N(1)	75.5(2)	O(3w)- Gd(1)- O(4)	118.83(18)
$O(3)^{\#1}$ - Gd(1)- N(2)	79.1(2)	N(1)- Gd(1)- O(4)	143.47(19)
O(5)- Gd(1)- N(2)	124.4(2)	N(2)- Gd(1)- O(4)	61.5(2)
O(2)- Gd(1)- N(2)	75.6(2)	O(1)- Gd(1)- O(4)	115.59(16)
3			
O(5)- Pr(1)-O(1W)	78.7(2)	O(11)- Pr(2)- O(8)	85.5(2)
O(5)- Pr(1)-O(2)	81.6(2)	O(11)- Pr(2)- O(3)	76.2(2)
O(1w)- Pr(1)-O(2)	143.7(2)	O(8)- Pr(2)- O(3)	144.5(2)
O(5)- Pr(1)- O(14)	138.6(2)	$O(11)$ -Pr(2)- $O(16)^{\#1}$	139.3(2)
O(1w)- Pr(1)- O(14)	138.7(2)	$O(8)$ - $Pr(2)$ - $O(16)^{\#1}$	75.5(2)
O(2)- Pr(1)- O(14)	72.9 (2)	$O(3)$ - $Pr(2)$ - $O(16)^{\#1}$	136.4(2)
O(5)- Pr(1)- O(13)	142.4(2)	$O(11)$ -Pr(2)- $O(15)^{\#1}$	140.9(2)
O(1w)- Pr(1)- O(13)	74.5(2)	$O(8)$ - $Pr(2)$ - $O(15)^{\#1}$	133.24(19)
O(2)- Pr(1)- O(13)	134.4(2)	$O(3)$ - $Pr(2)$ - $O(15)^{\#1}$	72.43(19)
O(14)- Pr(1)- O(13)	64.37(19)	$O(16)^{\#1}$ -Pr(2)-O(15) ^{#1}	64.19(19)
O(5)- Pr(1)- O(4)	62.20(19)	O(11)- Pr(2)- O(10)	62.96(18)
O(1w)- Pr(1)- O(4)	75.65(19)	O(8)- Pr(2)- O(10)	72.66(19)
O(2)- Pr(1)- O(4)	68.21(18)	O(3)- Pr(2)- O(10)	71.91(19)
O(14)- Pr(1)-O(4)	131.0(2)	$O(16)^{\#1}$ -Pr(2)-O(10)	138.7(2)
O(13)- Pr(1)- O(4)	132.67(18)	$O(15)^{\#1}(-Pr(2)-O(10))$	125.44(18)
O(5)- Pr(1)- O(1)	71.7(2)	O(11)- Pr(2)- N(3)	78.0(2)
O(1w)- Pr(1)- O(1)	136.16(19)	O(8)- Pr(2)- N(3)	121.9(2)
O(2)- Pr(1)- O(1)	62.26(17)	O(3)- Pr(2)- N(3)	84.1(2)
O(14)- Pr(1)- O(1)	67.7(2)	$O(16)^{\#1}$ - Pr(2)- N(3)	82.0(2)
O(13)- Pr(1)- O(1)	111.68(19)	$O(15)^{\#1}$ - Pr(2)- N(3)	76.1(2)
O(4)- Pr(1)- O(1)	115.34(17)	O(10)- Pr(2)- N(3)	137.72(19)
O(5)- Pr(1)- N(1)	79.3(2)	O(11)- Pr(2)- (7)	73.5(2)
O(1W)- Pr(1)- N(1)	83.4(2)	O(8)- Pr(2)- O(7)	62.32(18)
O(2)- Pr(1)- N(1)	122.43(19)	O(3)- Pr(2)- O(7)	136.40(19)
O(14)- Pr(1)- N(1)	87.4(2)	$O(16)^{\#1}$ - Pr(2)- O(7)	65.8(2)

Electronic Supplementary Material for CrystEngComm	
This journal is (c) The Royal Society of Chemistry 2009	

This journal is (c) The Roya	i Society of Chemistry	2009	
O(13)- Pr(1)- N(1)	71.8(2)	$O(15)^{\#1}$ - Pr(2)- O(7)	115.89(18)
O(4)- $Pr(1)$ – $N(1)$	138.8(2)	O(10)- Pr(2)-O(7)	118.49(18)
O(1)- Pr(1)- N(1)	60.21(19)	N(3)- Pr(2)- O(7)	59.6(2)
O(5)- Pr(1)- N(2)	121.5(2)	O(11)- Pr(2)- N(4)	123.4(2)
O(1w)- Pr(1)- N(2)	77.7(2)	O(8)- Pr(2)- N(4)	76.0(2)
O(2)- Pr(1)- N(2)	87.2 (2)	O(3)- Pr(2)- N(4)	88.91(19)
O(14)- Pr(1)- N(2)	89.7(2)	$O(16)^{\#1}$ - Pr(2)- N(4)	86.8(2)
O(13)- Pr(1)- N(2)	77.8(2)	$O(15)^{\#1}$ - Pr(2)- N(4)	79.0(2)
O(4)- Pr(1)- N(2)	60.4(2)	O(10)- Pr(2)- N(4)	60.50(19)
O(1)- Pr(1) –N(2)	145.79(19)	N(3)- Pr(2)- N(4)	155.1(2)
N(1)- Pr(1)- N(2)	147.5(2)	O(7)- Pr(2)- N(4)	134.13(19)
4			
O(5)- Er(1)-O(1w)	78.8(3)	O(11)-Er(2)- O(8)	85.4(2)
O(5)- Er(1)- O(2)	81.7(2)	O(11)- Er(2)- O(3)	76.2(2)
O(1w)- Er(1)- O(2)	143.4(2)	O(8)- Er(2)- O(3)	144.4(2)
O(5)- Er(1)- O(16)	138.1(3)	$O(11)$ - $Er(2)$ - $O(14)^{\#1}$	139.0(3)
O(1w)- Er(1)- O(16)	139.4(2)	$O(8)$ -Er(2)- $O(14)^{\#1}$	75.5(2)
O(2) –Er(1)- O(16)	72.3(2)	$O(3)$ - $Er(2)$ - $O(13)^{\#1}$	140.8(2)
O(5)- Er(1)- O(15)	141.9(2)	$O(8)$ - $Er(2)$ - $O(13)^{\#1}$	133.5(2)
O(1w)- Er(1)- O(15)	74.6(2)	$O(3)$ -Er(2)- $O(13)^{\#1}$	72.3(2)
O(2)- Er(1)- O(15)	134.7(2)	$O(8)$ - $Er(2)$ - $O(13)^{\#1}$	64.5(2)
O(16)- Er(1)-O(15)	65.1(2)	$O(14)^{\#1} Er(2) - O(13)^{\#1}$	63.3(2)
O(5)- Er(1)- O(4)	62.7(2)	O(8)- Er(2)- O(10)	72.9(2)
O(1w)- Er(1)-O(4)	75.2(2)	O(3)-Er(2)- O(10)	71.7(2)
O(2)- Er(1)-O(4)	68.4(2)	$O(14)^{\#1}$ - Er(2)-O(10)	138.8(2)
O(16)- Er(1)-O(4)	130.6(2)	$O(13)^{\#1}$ - Er(2)- O(10)	124.9(2)
O(15)- Er(1)-O(4)	132.7(2)	O(11)- Er(2)- N(3)	78.1(2)
O(5)- Er(1)- O(1)	71.2(2)	O(8)- Er(2)- N(3)	122.2(3)
O(1w)- Er(1)- O(1)	136.4(2)	O(3)- Er(2)- N(3)	83.7(2)
O(2)- Er(1)- O(1)	62.1(2)	$O(14)^{\#1}$ - Er(2)- N(3)	82.0(3)
O(16)- Er(1)- O(1)	67.7(2)	$O(13)^{\#1}$ - Er(2)- N(3)	75.9(3)
O(15)- Er(1)- O(1)	111.8(2)	O(10)- Er(2)- N(3)	137.8(2)
O(4)- Er(1)- N(1)	78.6(3)	O(11)- Er(2)- O(7)	72.7(2)
O(1w)- Er(1)-N(1)	82.8(2)	O(8)- Er(2)- O(7)	62.3(2)
O(2)- Er(1)-N(1)	88.6(3)	O(3)- Er(2)- O(7)	135.9(2)
O(16)- Er(1)-N(1)	71.5(2)	$O(14)^{\#1}$ - Er(2)- O(7)	66.3(2)
O(15)- Er(1)-N(1)	138.2(2)	$O(13)^{\#1}$ - Er(2)- O(7)	116.7(2)
O(16)- Er(1)-N(1)	61.0(2)	O(10)- Er(2)- O(7)	118.3(2)

Electronic Supplementary Material for CrystEngComm

This journal is (c) The Royal	Society of Chemistry	2009	
O(5)- Er(1)-N(2)	122.4(2)	N(7)- Er(2)- O(7)	59.9(2)
O(1w)- Er(1)- N(2)	77.4(2)	O(11)- Er(2)- N(4)	123.9(2)
O(2)- Er(1)- N(2)	87.6(2)	O(8)- Er(2)- N(4)	76.3(2)
O(16)- Er(1)- N(2)	89.3(3)	O(3)- Er(2)- N(4)	89.0(2)
O(15)- Er(1)- N(2)	77.6(2)	$O(14)^{\#1}$ - Er(2)- N(4)	86.7(3)
O(4)- Er(1)- N(2)	60.8(2)	$O(13)^{\#1}$ - Er(2)- N(4)	78.5(3)
O(1)- Er(1)- N(2)	145.9(2)	O(10)- Er(2)- N(4)	60.7(2)
N(1)- Er(1)- N(2)	146.7(3)	N(3)- Er(2)- N(4)	154.4(3)
		O(7)- Er(2)- N(4)	134.5(2)
5		•	
O(1)- Sm(1)- O(1w)	120.85(8)	O(4) - Sm(2)-O(5)	61.16(12)
O(1)-Sm(1)-O(2)	62.48(12)	O(4) - Sm(2)-O(7)	71.49(9)
O(1)- Sm(1)- O(6)	73.84(12)	O(4) - Sm(2)-N(2)	59.22(11)
O(1)- Sm(1)-N(1)	61.04(11)	O(4) - Sm(2)-O(8) ^{#2}	64.30(10)
$O(1)-Sm(1)-O(1)^{\#1}$	118.29(11)	$O(4)-Sm(2)-O(4)^{\#3}$	173.46(7)
$O(1)-Sm(1)-O(2)^{\#1}$	69.38(12)	$O(4)-Sm(2)-O(5)^{\#3}$	116.85(12)
$O(1)-Sm(1)-O(6)^{\#1}$	132.51(12)	$O(4)-Sm(2)-O(7)^{\#3}$	114.52(12)
$O(1)$ - $Sm(1)$ - $N(1)^{\#1}$	139.69(12)	$O(4)-Sm(2)-N(2)^{\#3}$	123.32(11)
O(1w)-Sm(1)-O(2)	142.54(9)	O(4)-Sm(2)-O(8) ^{#4}	109.36(10)
O(1w)-Sm(1)-O(6)	67.21(9)	O(5)-Sm(2)-O(7)	81.02(10)
O(1w)-Sm(1)-N(1)	74.25(8)	O(5)-Sm(2)-N(2)	119.82(12)
$O(1w)-Sm(1)-O(1)^{\#1}$	120.85(8)	$O(5)-Sm(2)-O(8)^{\#2}$	76.76(10)
$O(1w)-Sm(1)-O(2)^{\#1}$	142.54(9)	$O(5)-Sm(2)-O(4)^{\#3}$	116.85(12)
$O(1w)-Sm(1)-O(6)^{\#1}$	67.21(9)	$O(5)-Sm(2)-O(5)^{\#3}$	148.68(12)
$O(1w)-Sm(1)-N(1)^{\#1}$	74.25(8)	$O(5)-Sm(2)-O(7)^{\#3}$	129.60(10)
O(2)-Sm(1)- O(6)	80.04(12)	$O(5)-Sm(2)-N(2)^{\#3}$	71.36(12)
O(2)-Sm(1)-N(1)	123.44(12)	$O(5)-Sm(2)-O(8)^{\#4}$	75.28(12)
$O(2)$ -Sm(1)- $O(1)^{\#1}$	69.38(12)	O(7)-Sm(2)-N(2)	73.89(11)
$O(2)-Sm(1)-O(2)^{\#1}$	74.91(12)	$O(7)-Sm(2)-O(8)^{\#2}$	136.01(12)
$O(2)$ -Sm(1)- $O(6)^{\#1}$	142.00(13)	$O(7)-Sm(2)-O(4)^{\#3}$	114.52(9)
O(2)-Sm(1)- N(1) ^{#1}	83.10(12)	$O(7)-Sm(2)-O(5)^{\#3}$	129.60(12)
O(6)-Sm(1)- N(1)	87.48(12)	$O(7)-Sm(2)-O(7)^{\#3}$	53.88(9)
$O(6)-Sm(1)-O(1)^{\#1}$	132.51(12)	$O(7)-Sm(2)-N(2)^{\#3}$	71.99(11)
$O(6)$ - $Sm(1)$ - $O(1)^{\#1}$	132.51(12)	O(7)-Sm(2)-O(8) ^{#4}	151.23(11)
$O(6)-Sm(1)-O(2)^{\#1}$	142.00(13)	$N(2)-Sm(2)-O(8)^{\#2}$	85.01(11)
$O(6)$ - $Sm(1)$ - $O(6)^{\#1}$	134.41(12)	$N(2)-Sm(2)-O(4)^{\#3}$	123.32(11)
$O(6)$ - $Sm(1)$ - $N(1)^{#1}$	80.42(12)	$N(2)-Sm(2)-O(5)^{\#3}$	71.36(12)
$N(1)-Sm(1)-O(1)^{\#1}$	83.10(12)	$N(2)-Sm(2)-O(7)^{\#3}$	71.99(12)

Electronic Supplementary Material for CrystEngComm	
This journal is (c) The Royal Society of Chemistry 2009	

-] (-)] -			
$N(1)-Sm(1)-O(1)^{\#1}$	139.69(11)	$N(2)-Sm(2)-N(2)^{\#3}$	141.58(10)
$N(1)-Sm(1)-O(2)^{\#1}$	83.10(12)	N(2)-Sm(2)-O(8) ^{#4}	132.54(11)
$N(1)$ - $Sm(1)$ - $O(6)^{\#1}$	80.42(12)	$O(8)^{#2}-Sm(2)-O(4)^{#3}$	109.36(10)
$N(1)-Sm(1)-N(1)^{\#1}$	148.50(12)	$O(8)^{#2}-Sm(2)-O(5)^{#3}$	75.28(12)
$O(1)^{\#1}$ - Sm(1)-O(2) $^{\#1}$	62.48(12)	$O(8)^{#2}-Sm(2)-O(7)^{#3}$	151.23(11)
$O(1)^{\#1}$ - Sm(1)-O(6)^{\#1}	73.84(12)	$O(8)^{#2}-Sm(2)-N(2)^{#3}$	132.54(11)
$O(1)^{\#1}$ - Sm(1)-N(1)^{\#1}	61.04(11)	$O(8)^{#2}-Sm(2)-O(8)^{#4}$	52.96(11)
$O(2)^{\#1}$ - Sm(1)-O(6)^{\#1}	80.04(12)	$O(4)^{\#3}$ -Sm(2)-O(5) $^{\#3}$	61.16(12)
$O(2)^{\#1}$ - Sm(1)-N(1)^{\#1}	123.44(12)	$O(4)^{\#3}$ -Sm(2)-O(7) $^{\#3}$	71.74(9)
$O(6)^{\#1}$ - Sm(1)-N(1)^{\#1}	87.48(12)	$O(4)^{\#3}$ -Sm(2)-N(2) $^{\#3}$	59.22(11)
$O(5)^{#3}$ -Sm(2)-O(7) $^{#3}$	81.02(10)	$O(4)^{\#3}$ -Sm(2)-O(8) $^{\#4}$	64.30(10)
$O(5)^{#3}$ -Sm(2)-N(2) ^{#3}	119.82(12)	$O(5)^{#3}$ -Sm(2)-O(8) ^{#4}	76.76(11)
$O(7)^{\#3}$ -Sm(2)-N(2) $^{\#3}$	73.89(11)	$O(7)^{\#3}$ -Sm(2)-O(8) $^{\#4}$	136.01(11)
$N(2)^{#3}$ -Sm(2)-O(8) ^{#4}	85.01(11)		
6			
O(5)- Sm(1)- O(7)	76.68(8)	O(4)- Sm(1)- O(2)	131.72(7)
O(5)- Sm(1)- O(6)	80.84(8)	O(5)- Sm(1)- O(1)	139.23(7)
O(7)- Sm(1)- O(6)	118.97(8)	O(7)- Sm(1)- O(1)	143.97(7)
$O(5)$ - $Sm(1)$ - $O(3)^{\#1}$	84.37(8)	O(6)- Sm(1)- O(1)	78.77(7)
$O(7)$ - $Sm(1)$ - $O(3)^{\#1}$	76.31(8)	$O(3)^{\#1}$ - Sm(1)- O(1)	100.28(8)
$O(6)$ - $Sm(1)$ - $O(3)^{\#1}$	155.13(8)	O(4)- Sm(1)- O(1)	84.20(7)
O(5)- Sm(1)- O(4)	121.61(8)	O(2)- Sm(1)- O(1)	61.14(7)
O(7)- Sm(1)- O(4)	73.99(8)	O(5)- Sm(1)- N(1)	155.81(8)
O(6)- Sm(1)- O(4)	71.41(8)	O(7)- Sm(1)- N(1)	83.71(8)
$O(3)^{\#1}$ - Sm(1)- O(4)	133.43(8)	O(6)- Sm(1)- N(1)	121.61(8)
O(5)- Sm(1)- O(2)	78.76(8)	$O(3)^{\#1}$ - Sm(1)- N(1)	77.27(8)
O(7)- Sm(1)- O(2)	151.87(8)	O(4)- Sm(1)- N(1)	64.60(8)
O(6)- Sm(1)- O(2)	69.73(8)	O(2)- Sm(1)- N(1)	115.68(8)
$O(3)^{\#1}$ - Sm(1)- O(2)	87.88(8)	O(1)- Sm(1)- N(1)	60.89(7)
7			
O(6)- Eu(1)- O(5)	76.55(10)	$O(3)^{\#1}$ - Eu(1)-O(1)	99.89(10)
O(6)- Eu(1)- O(4)	80.82(10)	O(7)- Eu(1)- O(1)	84.71(9)
O(5)- Eu(1)- O(4)	118.51(10)	O(2)- Eu(1)- O(1)	61.38(8)
$O(6)$ - Eu(1)- $O(3)^{\#1}$	84.67(10)	O(6)- Eu(1)- N(1)	155.69(10)
$O(5)$ - Eu(1)- $O(3)^{\#1}$	76.82(10)	O(5)- Eu(1)- N(1)	83.75(10)
$O(4)$ - Eu(1)- $O(3)^{\#1}$	155.27(10)	O(4)- Eu(1)- N(1)	121.67(10)
O(6)- Eu(1)-O(7)	121.14(10)	$O(3)^{\#1}$ - Eu(1)- N(1)	77.01(10)
O(5)- Eu(1)-O(7)	73.43(10)	O(7)- Eu(1)- N(1)	64.86(10)

Electronic Supplementary Material for CrystEngComm This journal is (c) The Royal Society of Chemistry 2009

This journal is (c) The Royal Society of Chemistry 2009			
O(4)- Eu(1)-O(7)	71.34(10)	O(2)- Eu(1)- N(1)	115.98(10)
$O(3)^{\#1}$ - Eu(1)-O(7)	133.37(10)	O(1)- Eu(1)- N(1)	60.97(9)
O(6)- Eu(1)-O(2)	78.58(10)	O(5)- Eu(1)-O(2)	151.71(9)
$O(3)^{\#1}$ - Eu(1)-O(2)	87.69(10)	O(4)- Eu(1)-O(2)	69.91(9)
O(7)- Eu(1)-O(2)	132.21(9)	O(6)- Eu(1)-O(1)	139.29(9)
O(5)- Eu(1)-O(1)	144.06(9)	O(4)- Eu(1)-O(1)	78.94(9)

Symmetry transformations used to generate equivalent atoms: For 1 and 2: #1 x,

1/2-y, -1/2+z. For **3** and **4**: #1 x, 3/2-y, -1/2+z. For **5**: # 1 -x, y, 1/2-z; #2 x, 1+y, z; #3 1-x, y, 1/2-z; #4 1-x, 1+y, 1/2-z. For **6** and **7**: #1 -x, 1/2+y, 1/2-z.