Pressure-controlled aggregation in carboxylic-acids. A case study of the polymorphism of bromochlorofluoroaceticacid.

Roman Gajda, ${ }^{a}$ Andrzej Katrusiak ${ }^{a} *$ and Jeanne Crassous ${ }^{b}$
${ }^{\text {a Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland }}$
${ }^{\mathrm{b}}$ Sciences Chimiques de Rennes, Campus de Beaulieu, UMR 6226, CNRS-Université de Rennes 1, 35042 Rennes Cedex, France

katran@amu.edu.pl

Abstract: Pressure induces different hydrogen-bonding patterns in the polymorphs of bromochlorofluoroacetic acid, CBrClFCOOH , by affecting the balance between secondary intermolecular interactions involving halogen and oxygen atoms. In polymorph α a pattern of the molecules syn-syn H-bonded into catemers is strongly corrugated, up to the limit imposed by steric hindrances between the neighboring chain members, whereas in polymorph β the molecules are H bonded into dimers. No phase transition between the catemeric and dimeric CBrClFCOOH polymorphs, despite over-pressurizing phase α by over 1.3 GPa into the stability region of phase β, demonstrates that the preference for dimeric and catemeric forms of carboxylic acids may be impossible for detection as classical solid-state phase transitions, without completely dissolving or melting these compounds and avoiding their nucleation. The smaller volume of the β phase, and hence its high-pressure stability, has been rationalized by more freedom of the zero-dimensional dimers to adjust their positions in the crystal structure, compared to the 1-dimensional catemers. The conformational limitations of the carboxylicacid aggregates are consistent with the survey of all carboxylic-acid structures determined so far.

Figure S1. Stages of crystal growth of the CBrClFCOOH polymorph α sample in the DAC from polycrystalline mass to the single crystal at $296 \mathrm{~K} / 0.59 \mathrm{GPa}$. The ruby for pressure calibration is placed below the center of the DAC chamber. Presented sequence of photographs was recorded during 3 hours.

Figure S2. The process of CBrClFCOOH crystal growth of seeded polymorph α in the pressure region of stable polymorph β : (a) polymorph α seed at $0.28 \mathrm{GPa} / 300 \mathrm{~K}$; (c) 370 K ; (d) at 370 K immediately after increasing pressure; (e-i) gradual decrease of temperature from 360 to 300 K ; and (j) 1.93 GPa / 296 K. Presented sequence of photographs was recorded during 3 hours.

Table S1. Donohue angles (i.e. angles $\eta_{\mathrm{d}}^{\prime}=\mathrm{C}-\mathrm{O} \cdots \mathrm{O}^{\prime}$ and $\eta_{\mathrm{a}}^{\prime}=\mathrm{C}=\mathrm{O}^{\cdots} \mathrm{O}^{\prime}$) for the hydrogen bonds in CBrClFCOOH molecules in phases α and β.

	Molecule A		Molecule B	
Pressure (GPa)	$\eta_{\mathrm{a}}^{\prime}\left({ }^{\circ}\right)$	$\eta^{\prime}{ }_{\mathrm{d}}\left({ }^{\circ}\right)$	$\eta_{\mathrm{a}}^{\prime}\left({ }^{\circ}\right)$	$\left.\eta^{\prime} \mathrm{d}^{\circ}{ }^{\circ}\right)$
0.28 phase α	$145(2)$	$111(1)$	$137(3)$	$111(2)$
0.59 phase α	$146(1)$	$111(1)$	$134(1)$	$114(1)$
0.80 phase β	$121.1(9)$	$111.7(8)$	-	-
1.37 phase β	$119.3(7)$	$111.4(7)$	-	-
1.93 phase α	$136(4)$	$107(2)$	$136(3)$	$110(3)$

Pressure (GPa)	0.28	0.59	0.80	1.37	1.93
Temperature (K)	296	296	296	296	296
Crystal data					
Chemical formula	$\mathrm{C}_{2} \mathrm{HBrClFO}_{2}$				
M_{r}	191.39	191.39	191.39	191.39	191.39
Cell setting, space group	Orthorhombic Pbcn	Orthorhombic Pbcn	Monoclinic $P 2{ }_{1} / \mathrm{C}$	Monoclinic $P 2{ }_{1} / C$	Orthorhombic Pbcn
$a(\AA)$	16.458 (5)	16.169 (4)	7.898 (2)	7.730 (3)	15.274 (4)
$b(\AA)$	6.0708 (4)	6.0038 (16)	7.840 (3)	7.685 (3)	5.8537 (3)
$c(\AA)$	21.0950 (12)	20.971 (4)	8.043 (2)	7.997 (2)	20.7562 (12)
$\alpha{ }^{\circ}$)	90.00	90.00	90.00	90.00	90.00
$\beta\left({ }^{\circ}\right)$	90.00	90.00	95.553 (14)	95.74 (2)	90.00
$V(\AA)$	2107.7 (6)	2035.7 (9)	495.6 (2)	472.7 (3)	1855.9 (5)
Z	16	16	4	4	16
$D_{x}\left(\mathrm{Mg} \mathrm{m}^{-3}\right)$	2.413	2.498	2.565	2.689	2.740
Radiation type	Mo K α				
$\mu\left(\mathrm{mm}^{-1}\right)$	8.21	8.50	8.73	9.15	9.33
Crystal form, colour	colourless	colourless	colourless	colourless	colourless
$\begin{array}{ll} \hline \begin{array}{l} \text { Crystal } \\ (\mathrm{mm}) \end{array} & \text { size } \end{array}$	$\begin{aligned} & 0.450 \times 0.450 \\ & \times 0.085 \end{aligned}$	$\begin{aligned} & 0.460 \times 0.470 \\ & \times 0.085 \end{aligned}$	$\begin{aligned} & 00.460 \times 0.470 \\ & \times 0.085 \end{aligned}$	$\begin{aligned} & 00.450 \times 0.460 \\ & \times 0.085 \end{aligned}$	$\begin{aligned} & 00.430 \times 0.430 \\ & \times 0.085 \end{aligned}$
Data collection					
Diffractometer	Kuma KM4 CCD K geometry	Kuma KM4 CCD к geometry	Kuma KM4 CCD geometry	Kuma KM кCCD geometry	4 Kuma KM4 кCCD κ geometry
Data collection ω scans method		ω scans	ω scans	ω scans	ω scans
Absorption correction	analytical	analytical	analytical	analytical	analytical
$T_{\text {min }}$	0.33	0.32	0.33	0.33	0.33

