Supporting Information for the paper entitled

The first crystallographic observation of up to third hydration layer of Cu(II) ion in an unusual 'water-cation layer' templated by an Anderson polyoxometallate

Mahammad Ali*, Daipayan Dutta, Surajit Biswas, Jaromir Marek and Atish Dipankar Jana*

Experimental Section

0.004 M (0.92 g) of H₂TeO₄. 2H₂O, 0.0042 M (1.016 g) of Na₂MoO₄.2H₂O, 4 M (8 ml) HCl, 0.0093 M (0.692 g) KCl, 3 mmol (0.595 g) 1,10-phenanthroline and 1 mmol (0.242 g) CuNO₃.3H₂O were added in 40 ml H₂O and stirred for 2.5 h. Then the mixture was transferred to a Teflon bomb and kept in oven at 160° C for 6 days. The green solution obtained on cooling to room temperature in steps of 5° C was filtered and allowed to undergo slow evaporation at ambient temperature. Green hexagonal crystals suitable for X-ray diffraction were obtained in 15 days.

Crystal data: Compound 1: $2(C_{36}H_{24}CuN_6)$, $Mo_6O_{24}Te$, $CuH_{12}O_6$, $27(H_2O)$, Mr = 2953.64, Trigonal, P-31c(No.163), a = 17.2848(6), b = 17.2848(6), c = 19.2560(11) Å; $\alpha = \beta = 90$, $\gamma = 120^{\circ}$; V= 4982.3(4) Å³, Z = 2, D(calc)[g/cm³] 1.960, Crystal Size[mm] = 0.20 x 0.30 x 0.30; Mu(MoK_a) [mm⁻¹] 1.754 F(000) = 2954. A total of 37123 reflections were collected and 2951 Unique R = 0.056, $wR_2 = 0.1353$, S = 1.15 Observed data [I>2.0 σ (I)] = 2580. diffractometer Kuma KM-4 equipped with a CCD detector using monochromated (monochromator Enhance, Oxford Diffraction) MoKa (λ = 0.71073) at 120(2) K. diffractometer Kuma KM-4 equipped with a CCD detector using monochromator Enhance, Oxford Diffraction) MoKa (λ = 0.20(2) K. Additional Crystallographic data are available (CCDC 706251) from the Cambridge Crystallographic Data Centre. 12 Union Road, Cambridge CB21EZ, UK; fax: (+44) 1223-336-033; or deposit@ccdc.cam.ac.uk).

Table S1 – Details of h	ydrogen bonding parameter of the comj	olex

D-HA d(D	D-H)(Å) $d(HA)(Å) d(DA)(Å) <(DHA)(^{0})$
O(1)-H(1W)O(8)#1	0.918(13) 1.771(12) 2.683(5) 172(4)
O(1)-H(1V)O(4)#1	0.950(13) 1.647(16) 2.524(6) 152(3)
O(2)-H(2V)O(10)	0.93(3) 1.83(3) 2.754(7) 174(2)
O(2)-H(2W)O(5)#2	0.95(6) 1.86(6) 2.813(8) 178(11)
O(3)-H(3W)O(5)	0.93(3) 1.83(3) 2.753(8) 170(7)
O(3)-H(3V)O(3)#3	0.92(2) 1.70(2) 2.614(10) 176(7)
O(3)-H(3X)O(3)#4	0.921(15) 1.973(15) 2.889(12) 173(2)
O(4)-H(4W)O(2)	0.916(15) 1.504(15) 2.386(8) 160(3)
O(5)-H(5W)O(6)	0.915(15) 1.81(3) 2.710(7) 167(5)
O(5)-H(5V)O(9)#5	0.935(15) $2.03(3)$ $2.956(6)$ $171(5)$
O(6)-H(6W)O(4)	0.913(14) 1.722(15) 2.629(7) 172(4)
O(6)-H(6V)O(1)#1	0.969(13) 1.870(14) 2.836(7) 174(7)

Symmetry transformations used to generate equivalent atoms: #1 -y,x-y,z #2 -x+y,y,-z+1/2 #3 -y+1,-x+1,-z+1/2 #4 x,x-y,-z+1/2 #5 y,x,z-1/2

Figure S1: The overall supramolecular assembly in complex 1 depicting the interpenetration of 3D pillar-layered hydrogen bonded $[Cu(H_2O)_6]^{2+}$ -water-POM network and π - π layer of $[Cu(phen)_3]^{2+}$ units

Figure S2: The ORTEP diagram(30% ellipsoidal probability) of the hydration layers around $[Cu(H_2O)_6]^{2+}$ unit. {#1 = -y,x-y,z; #2=-x+y,-x,z ;#3=-x,-y,1-z ;#4= y,-x+y,1-z ;#5= x-y,x,1-z }

Figure S3: View showing the hydrogen bonded network of three water hexamer with the central hydrated Cu(II) cation.

Figure S4: The view showing the pillar formed through the hydrogen bonding water molecules with the POM units (shown in yellow).