Electronic supplementary information

Cadmium(II) Complexes with 3,5-Di(1H-imidazol-1-yl)benzoate: Topological and Structural Diversity Tuned by Counteranions

Zhi Su, Kai Cai, Jian Fan, Shui-Sheng Chen, Man-Sheng Chen, Wei-Yin Sun*

Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093, China.

1						
2.375(4)	Cd(1)-N(3)#2	2.251(5)				
2.401(4)	Cd(1)-N(1)	2.266(5)				
2.406(4)	Cd(1)-O(4)	2.300(4)				
87.78(17)	N(3)#2-Cd(1)-N(1)	100.96(19)				
55.44(15)	N(3)#2-Cd(1)-O(4)	134.77(18)				
142.57(14)	N(1)-Cd(1)-O(4)	102.16(17)				
87.65(17)	N(3)#2-Cd(1)-O(2)#1	128.20(17)				
145.37(17)	N(1)-Cd(1)-O(2)#1	94.95(17)				
94.63(15)	O(4)-Cd(1)-O(2)#1	87.67(16)				
55.36(15)	N(3)#2-Cd(1)-O(3)	87.42(17)				
126.37(16)						
2						
2.350(3)	Cd(1)-O(2)	2.1919(15)				
2.281(4)						
180.0	N(1)#5-Cd(1)-O(1)	91.02(13)				
91.21(11)	N(1)#3-Cd(1)-N(1)#5	180.0				
	1 2.375(4) 2.401(4) 2.406(4) 87.78(17) 55.44(15) 142.57(14) 87.65(17) 145.37(17) 94.63(15) 55.36(15) 126.37(16) 2.350(3) 2.281(4) 180.0 91.21(11)	1 $2.375(4)$ $Cd(1)$ -N(3)#2 $2.401(4)$ $Cd(1)$ -N(1) $2.406(4)$ $Cd(1)$ -O(4) $87.78(17)$ $N(3)$ #2-Cd(1)-N(1) $55.44(15)$ $N(3)$ #2-Cd(1)-O(4) $142.57(14)$ $N(1)$ -Cd(1)-O(2)#1 $145.37(17)$ $N(3)$ #2-Cd(1)-O(2)#1 $145.37(17)$ $N(1)$ -Cd(1)-O(2)#1 $94.63(15)$ $O(4)$ -Cd(1)-O(2)#1 $55.36(15)$ $N(3)$ #2-Cd(1)-O(3) $126.37(16)$ $Cd(1)$ -O(2) $2.350(3)$ $Cd(1)$ -O(2) $2.281(4)$ $N(1)$ #5-Cd(1)-O(1) $91.21(11)$ $N(1)$ #3-Cd(1)-N(1)#5				

Table S1 Selected Bond Lengths (Å) and Bond Angles (°) for Complexes 1 - 4

O(2)-Cd(1)-N(1)#5	88.79(11) O(2)-Cd(1)-O(1)		95.61(10)		
O(2)#4-Cd(1)-O(1)	84.39(10) O(1)-Cd(1)-O(1)#4		180.0		
N(1)#3-Cd(1)-O(1)	88.98(13)				
		3			
Cd(1)-N(3)#10	2.250(6)	Cd(1)-O(6)	2.266(5)		
Cd(1)-O(3)	2.335(6)	Cd(1)-O(10)	2.368(5)		
Cd(1)-O(2)	2.397(5)	Cd(1)-O(1)	2.532(5)		
Cd(1)-O(4)	2.563(5) Cd(2)-N(1)#6		2.235(6)		
Cd(2)-N(7)#7	2.283(6) Cd(2)-N(5)#8		2.320(7)		
Cd(2)-O(7)#9	2.337(5) Cd(2)-O(5)		2.390(5)		
Cd(2)-O(7)	2.431(5)				
N(3)#10-Cd(1)-O(6)	93.6(2)	N(3)#10-Cd(1)-O(3)	142.7(2)		
O(6)-Cd(1)-O(3)	81.1(2) N(3)#10-Cd(1)-O(10)		92.6(2)		
O(6)-Cd(1)-O(10)	168.1(2)	O(3)-Cd(1)-O(10)	87.9(2)		
N(3)#10-Cd(1)-O(2)	85.4(2)	O(6)-Cd(1)-O(2)	105.2(2)		
O(3)-Cd(1)-O(2)	131.72(19)	O(10)-Cd(1)-O(2)	85.43(18)		
N(3)#10-Cd(1)-O(1)	136.9(2)	O(6)-Cd(1)-O(1)	87.79(19)		
O(3)-Cd(1)-O(1)	80.06(18)	O(10)-Cd(1)-O(1)	94.58(18)		
O(2)-Cd(1)-O(1)	53.04(17)	N(3)#10-Cd(1)-O(4)	89.9(2)		
O(6)-Cd(1)-O(4)	86.1(2)	O(3)-Cd(1)-O(4)	53.04(18)		
O(10)-Cd(1)-O(4)	83.76(19) O(2)-Cd(1)-O(4)		168.01(18)		
O(1)-Cd(1)-O(4)	133.08(18) N(1)#6-Cd(2)-N(7)#7		177.8(2)		
N(1)#6-Cd(2)-N(5)#8	95.9(2) N(7)#7-Cd(2)-N(5)#8		82.5(2)		
N(1)#6-Cd(2)-O(7)#9	96.8(2) N(7)#7-Cd(2)-O(7)#9		85.3(2)		
N(5)#9-Cd(2)-O(7)#9	120.3(2)	N(1)#6-Cd(2)-O(5)	89.9(2)		
N(7)#7-Cd(2)-O(5)	88.4(2)	N(5)#8-Cd(2)-O(5)	81.5(2)		
O(7)#9-Cd(2)-O(5)	156.11(19)	N(1)#6-Cd(2)-O(7)	88.6(2)		
N(7)#7-Cd(2)-O(7)	92.6(2)	N(5)#8-Cd(2)-O(7)	164.3(2)		
O(7)#9-Cd(2)-O(7)	73.81(17)	O(5)-Cd(2)-O(7)	83.51(19)		
4					
Cd(1)-N(5)	2.283(3)	Cd(1)-N(7)#11	2.289(3)		
Cd(1)-N(1)	2.331(3)	Cd(1)-N(3)#12	2.362(3)		
Cd(1)-O(1)#13	2.441(3)				

N(5)-Cd(1)-N(7)#11	97.46(11)	N(5)-Cd(1)-N(1)	146.96(11)
N(7)#11-Cd(1)-N(1)	95.94(10)	N(5)-Cd(1)-N(3)#12	85.32(12)
N(7)#11-Cd(1)-N(3)#12	173.18(11)	N(1)-Cd(1)-N(3)#12	84.87(11)
N(5)-Cd(1)-O(1)#13	133.56(10)	N(7)#11-Cd(1)-O(1)#13	81.81(10)
N(1)-Cd(1)-O(1)#13	78.23(10)	N(3)#12-Cd(1)-O(1)#13	91.76(11)

Symmetry transformations used to generate equivalent atoms: #1 -x, y-1/2, -z+3/2; #2 x-1, y, z; #3 -x+5/2, -y+3/2, -z; #4 -x+2, -y+1, -z; #5 x-1/2, y-1/2, z; #6 -x+2, -y+1, -z; #7 -x+1, -y, -z+1; #8 -x+2, -y, -z+1; #9 -x+2, -y+1, -z+1; #10 x-1, y, z; #11 -x+1/2, y+1/2, -z+3/2; #12 x, -y, z+1/2; #13 -x, -y+1, -z+1.

Table S2Hydrogen bonding distances (Å) and angles (°) for complexes 1-4						
$D - H \cdots A / D \cdots A$	<i>d</i> (D-H)	<i>d</i> (H …A)	<i>d</i> (D ····A)	$\angle (D - H \cdots A)$		
Complex 1						
C10 - H10 ···· O4#1	0.93	2.52	3.360(8)	150		
C8 - H8 ··· O3#2	0.93	2.49	3.272(9)	142		
O5 ··· O3#3			2.814			
O5 ··· O1			2.912			
		Complex 2				
C4 - H4A ··· O3#4	0.93	2.42	3.348(7)	180		
C6 - H6A ··· O3#4	0.93	2.37	3.269(5)	161		
O2 ··· O3			2.535			
		Complex 3				
C10 - H10 ··· O7#5	0.93	2.59	3.198(11)	124		
C10 - H10 ··· O8#5	0.93	2.44	3.344(12)	166		
C17 - H17 ··· O12	0.93	2.47	3.344(11)	157		
O4 ··· O12#6			2.941			
O10 ··· O3#7			2.765			
O10 ··· O1#7			2.765			
O10 ··· O14#8			2.784			
O5 ··· O1			2.848			
O5 ··· O13			2.986			
O2 ··· O11			3.002			
O15 ··· O4#9			2.832			
		Complex 4				
C9 - H9 ··· O5#10	0.93	2.49	3.385(5)	161		
C10 - H10 ··· O1#11	0.93	2.41	2.942(4)	117		
C15 - H15 ··· O5#12	0.93	2.38	3.296(5)	168		
C20 - H20 ··· O5#12	0.93	2.53	3.445(5)	168		
C23 - H23 ··· O2#11	0.93	2.58	3.161(5)	121		
C25 - H25 ··· O3#13	0.93	2.34	2.982(5)	126		
C25 - H25 ··· O4#13	0.93	2.45	3.267(5)	147		
O5 ··· O3#14			2.749			
O5 ··· O4#12			2.910			

Symmetry transformations used to generate equivalent atoms: #1 -x, -y, 2-z; #2 x, 1/2-y, -1/2+z; #3 1+x, 1/2-y, -1/2+z; #4 x, 1+y, z; #5 2-x, 1-y, -z; #6 1-x, -y, 1-z; #7 1-x, -y, -z; #8 -1+x, y, -1+z; #9 1+x, y, z; #10 x, 1-y, 1/2+z; #11 -x, 1-y, 1-z; #12 1/2-x, -1/2+y, 3/2-z; #13 x, 1-y, -1/2+z; #14 x, y, -1+z.

Figure S1. The TG curves of 1-4.

Figure S2. The acetate is alternating above and below the 2D plane in 1.

Figure S3. The π - π interactions between the 2D layers in **1**.

Figure S4. 3D packing diagram of 1. The dashed lines represent of the hydrogen bonds.

Figure S5. The (6,8)-connected **seh** net.

Figure S6. The packing diagram of 2D layers in **3**.

Figure S7. The schematic representation of π - π interactions between the 2D layers in **3**.

Figure S8. The 3D structure of **3**. Red balls represent of the coordinated and uncoordinated water molecules.

Figure S9. The close-up view of self-penetrated rings in 4.