Supplementary Information

Structure and Physical Properties of Substituted Malonate Divalent Metal Coordination Polymers with Dipyridylamine Co-Ligands: Acentric Chain, Herringbone Layer, and Novel Binodal Network Topologies

Gregory A. Farnum, Joseph A. Nettleman, Robert L. LaDuca*

Table S1. Selected Bond distance (Å) and angle (°) data for 1.

G 1 61	1.0.4.6(0)	01 0 1 03	00.40(10)
Cul-Ol	1.946(2)	OI-CuI-O3	89.49(10)
Cu1–O3	1.975(2)	01–Cu1–O5	163.06(9)
Cu1–O5	1.979(2)	O3–Cu1–O5	90.02(9)
Cu1–N1	2.006(2)	01–Cu1–N1	87.21(10)
Cu1–O6 ^{#1}	2.190(2)	O3-Cu1-N1	171.58(10)
		O5-Cu1-N1	90.88(9)
		$O1-Cu1-O6^{\#1}$	101.72(9)
		O3–Cu1–O6 ^{#1}	92.04(8)
		O5–Cu1–O6 ^{#1}	95.22(8)
		N1–Cu1–O6 ^{#1}	96.22(10)

Symmetry transformation to generate equivalent atoms: #1 x, y + 1, z.

Tuete SEt Hjulegen ee	namg aistan	ee (11) und u	ingie () data i	
$D-\mathrm{H}^{}A$	$d(\mathrm{H}^{}A)$	<dha< td=""><td>$d(D^{\cdots}A)$</td><td>symmetry transformation for</td></dha<>	$d(D^{\cdots}A)$	symmetry transformation for
				A
1				
O1W-H1WA O8	2.36(2)	139.1(18)	3.143(6)	
O1W-H1WB O1	2.40	123.2	3.001(5)	-x, -y+2, z-1/2
07–H7A […] O4	1.85(2)	165(4)	2.705(3)	x - 1/2, -y + 2, z
N2-H2NO2	1.86(2)	171(4)	2.732(4)	x - 1/2, -y + 2, z
N3-H3NO4	1.88(5)	178(5)	2.694(4)	-x, -y + 1, z + 1/2
2				
N2–H2N […] O5A	2.09(2)	173(3)	2.964(9)	-x, y-1, -z+1/2
N2-H2N ^{···} O7B	2.15(4)	178(4)	3.02(3)	-x, y-1, -z+1/2
N5–H5N […] O5A	2.484(13)	122.7(4)	3.049(9)	x + 1/2, -y + 1/2, z + 1/2
3				
N2-H2N011	2.12(2)	178(6)	3.000(7)	x + 1/2, -y + 1/2, z - 1/2
N5-H5N014	1.92(3)	172(12)	2.804(7)	
N4-H4N O2	1.81(3)	171(12)	2.699(6)	-x + 3/2, y + 1/2, -z + 1/2
O14–H14O […] O2W	1.84(3)	172(12)	2.716(8)	x + 1, y, z
4				
N2–H2N […] O1W	2.13	169.3	2.9881(18)	x - 1/2, y + 1/2, z
N3–H3N […] O3	1.79	175.4	2.6718(16)	x, -y + 2, z + 1/2
O2W–H2WA […] O3W	1.94	159.0	2.816(2)	-x + 1/2, -y + 5/2, -z + 1
O2W–H2WB […] O2	1.98	163.6	2.7944(18)	-x + 1/2, -y + 3/2, -z + 1
O1W-H1WA O2	1.93	167.6	2.7457(16)	
O1W-H1WB O4	1.95	156.8	2.7551(16)	$-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$
O3W–H3WA […] O1W	2.04	166.9	2.8710(18)	
O3W–H3WB […] O2W	1.91	161.6	2.746(2)	

Table S2. Hydrogen bonding distance (Å) and angle (°) data for 1–4.

Cu1–O1 ^{#1}	1.962(2)	$O1^{\#1}$ –Cu1–O4	177.79(8)
Cu1–O4	1.9900(19)	$O1^{\#1}$ –Cu1–N3	93.48(9)
Cu1–N3	1.993(2)	O4–Cu1–N3	87.73(9)
Cu1–N1 ^{#2}	2.004(2)	$O1^{\#1}$ -Cu1-N1 ^{#2}	91.72(9)
Cu1–O2	2.199(2)	O4–Cu1–N1 ^{#2}	86.70(9)
Cu2–O3	1.9617(19)	N3–Cu1–N1 ^{#2}	166.41(10)
Cu2–N4	2.027(2)	$O1^{\#1}$ –Cu1–O2	96.06(8)
		O4–Cu1–O2	85.69(8)
		N3-Cu1-O2	93.95(9)
		N1 ^{#2} –Cu1–O2	97.98(9)
		$O3^{\#3}$ –Cu2–O3	180.0
		O3 ^{#3} -Cu2-N4	89.68(9)
		O3–Cu2–N4	90.33(9)
		N4-Cu2-N4 ^{#3}	180.0

Table S3. Selected Bond distance (Å) and angle (°) data for 2.

Symmetry transformation to generate equivalent atoms: #1 - x + 1/2, y - 1/2, -z + 1/2; #2x + 1/2, -y - 1/2, z + 1/2; #3 - x + 1/2, -y - 1/2, -z + 1.

$Cd1 - 05^{\#1}$	2 195(4)	N1-Cd1-O3	88 93(13)
Cd1-N1	2.256(4)	04-Cd1-03	54 94(11)
Cd1-04	2.343(3)	01-Cd1-O3	115.47(12)
Cd1-O1	2.380(4)	O2-Cd1-O3	88.42(12)
Cd1–O2	2.397(4)	O6 ^{#1} -Cd2-N3 ^{#2}	89.70(16)
Cd1–O3	2.430(4)	O6 ^{#1} Cd2N6	84.85(16)
Cd2–O6 ^{#1}	2.272(4)	N3 ^{#2} Cd2N6	171.94(15)
Cd2–N3 ^{#2}	2.297(4)	$O6^{\#1}$ -Cd2-O8 ^{\#3}	133.31(14)
Cd2–N6	2.311(4)	$N3^{#2}$ -Cd2-O8 ^{#3}	88.34(15)
$Cd2-O8^{\#3}$	2.315(4)	N6-Cd2-O8 ^{#3}	91.08(15)
Cd2-O8	2.320(4)	O6 ^{#1} –Cd2–O8	154.29(15)
Cd204	2.503(4)	N3 ^{#2} –Cd2–O8	101.00(15)
Cd2–O7 ^{#3}	2.744(4)	N6-Cd2-O8	86.38(15)
$O5^{\#1}$ -Cd1-N1	106.15(17)	O8–Cd2–O8 ^{#3}	70.91(14)
$O5^{\#1}$ -Cd1-O4	99.10(14)	O6 ^{#1} –Cd2–O4	85.46(13)
N1-Cd1-O4	126.63(14)	N3 ^{#2} Cd2O4	89.05(14)
$O5^{\#1}$ -Cd1-O1	87.48(14)	N6-Cd2-O4	96.42(14)
N1-Cd1-O1	86.79(14)	O8 ^{#3} –Cd2–O4	141.11(12)
O4Cd1O1	141.25(12)	O8-Cd2-O4	71.56(11)
$O5^{\#1}$ -Cd1-O2	95.38(15)	$O6^{\#1}$ -Cd2-O7 ^{#3}	82.72(13)
N1-Cd1-O2	135.01(14)	$N3^{#2}$ -Cd2-O7 ^{#3}	88.55(14)
O4Cd1O2	86.63(12)	N6-Cd2-O7 ^{#3}	84.88(14)
O1–Cd1–O2	54.67(12)	$O8^{\#3}$ -Cd2-O7 ^{\#3}	50.60(12)
O5 ^{#1} –Cd1–O3	153.57(14)	O8–Cd2–O7 ^{#3}	120.50(12)
		O4–Cd2–O7 ^{#3}	167.95(11)

Table S4. Selected Bond distance (Å) and angle (°) data for **3**.

Symmetry transformation to generate equivalent atoms: #1 - x + 1, -y, -z; #2 - x + 3/2, y - 1/2, -z + 1/2; #3 - x + 2, -y, -z + 1.

Co101	2.0716(10)	O1–Co1–O1 ^{#1}	176.16(6)
Co1–O3	2.1195(10)	O1–Co1–O3	84.49(4)
Co1–N1	2.1522(12)	O1 ^{#1} –Co1–O3	92.95(4)
		O3 ^{#1} –Co1–O3	97.01(6)
		01-Co1-N1	87.16(4)
		01 ^{#1} –Co1–N1	95.56(4)
		O3 ^{#1} –Co1–N1	87.17(4)
		O3-Co1-N1	170.84(4)
		N1–Co1–N1 ^{#1}	89.88(7)

Table S5. Selected Bond distance (\AA) and angle $(^{\circ})$ data for 4.

Symmetry transformation to generate equivalent atoms: #1 - x, y, -z + 1/2.

Figure S1. Supramolecular layer of **1**. Hydrogen bonding is indicated as dashed bars.

Figure S2. Stacking diagram of 3, showing unligated species between the (6,3) layers.

Figure S3. Supramolecular ribbon motifs in **4**. Hydrogen bonding is indicated as dashed bars.

Figure S4. Curie-Weiss plot for **1**.

Figure S5. Curie-Weiss plot for **2**.

Figure 6. PXRD spectrum of **1**. The thin lines represent the calculated pattern.

Figure 7. PXRD spectrum of **2**. The thin lines represent the calculated pattern.

Figure 8. PXRD spectrum of **3**. The thin lines represent the calculated pattern.

Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry 2009