SUPPLEMENTARY MATERIAL

Fig. S1 IR- Spectrum

Fig. S4. Va-O *vs.* Vb-O bond distances. Circles: data retrieved from the CSD database.(a) V-O bond distances in [010] vanadate chains. (b) V-O bond distances in [100]a chains and(c) V-O bond distances in [100]b chains.

Fig. S5. (a) Distortion of the metal organic framework due to the relative displacement of the nodes due to the value of the node-node angle. (b) Distortion of the [010] channels. (c) Distortion of the [100] channels.

Fig. S6. VDP polyhedra for the crystallization water molecules

Fig. S8. Thermogravimetic curve. Heating ratio 5°Cmin⁻¹.

UV-vis spectrum.

Table S1 (a) Node-Node angles of the "cds" metal organic net and "sql" metal	1
organic layers. (b) Tilting angles in the metal organic framework of the title compound	d.

Node-Node-Node	Angle(°)					
3D "cds" net						
Ni2-Ni1-Ni3	177.21					
Ni1-Ni3-Ni7	174.99					
Ni3-Ni7-Ni2	175.15					
Ni7-Ni2-Ni1	177.21					
Ni1-Ni1-Ni1	180					
Ni2-Ni2_Ni2	180					
Ni3-Ni3-Ni3	180					
Ni7-Ni7-Ni7	180					
2D- "sql" layers						
Ni5-Ni4-Ni5	177.02					
Ni5-Ni5-Ni5	180					
Ni4-Ni4-Ni4	180					
Ni8-Ni6-Ni8	173.11					
Ni8-Ni8-Ni8	180					
Ni6-Ni6-Ni6	180					
(a)						

3D "co	ls" net	2D- "sql" layers				
Ni-Bpy-Ni	Tilting angle(°)	Ni-Bpy-Ni	Tilting angle(°)			
N11-N9N10	171.2	N15-N8N7	176.3			
N10-N12N9	167.1	N16-N7N8	175.9			
N10-N12N11	168.1	N7-N16N15	174.2			
N11-N9N12	172.1	N18-N15N16	171.8			
N24-N31N32	170.8	N1-N13N1	177.3			
N32-N22N31	170.2	N13-N1N13	177.3			
N32-N22N21	173.6	N18-N17N18	170.6			
N20-N21N22	174.2	N17-N18N17	170.6			
N21-N20N19	175.8	N5-N29N30	176.2			
N23-N19N20	167.0	N30-N6N5	176.5			
N19-N23N24	175.1	N6-N30N29	176.4			
N31-N24N23	170.1	N29-N5N6	174.3			
N25-N26N25	175.1	N3-N4N3	176.7			
N26-N25N26	175.1	N4-N3N4	176.7			
N29-N27N29	171.5	N1-N2N1	174.4			
N27-N29N27	27-N29N27 171.5		174.4			
(b)						

Table S2 Geometry of the channels in the crystal structure of the title compound.
(R_{sd} =Radius of the channel in the selected point, and S= Section of the channel)

Point	Coord	inates	R _{sd} (Å)	$S(Å^2)$	Point Coordinates		R _{sd} (Å)	$S(Å^2)$	
Χ	У	Z			X	У	Z		
	Channels [100]a					Cha	annels	[100]b	
0.0	0.25	0.75	1.52	35.0	0.0	0.75	0.75	1.47	34.9
0.1	0.25	0.75	1.44	34.0	0.1	0.75	0.75	1.48	35.5
0.2	0.25	0.75	1.39	34.4	0.2	0.75	0.75	1.50	35.7
0.3	0.25	0.75	1.40	34.1	0.3	0.75	0.75	1.51	35.3
0.4	0.25	0.75	1.36	33.4	0.4	0.75	0.75	1.43	31.8
0.5	0.25	0.75	1.39	34.5	0.5	0.75	0.75	1.17	27.2
0.6	0.25	0.75	1.40	33.5	0.6	0.75	0.75	1.17	29.7
0.7	0.25	0.75	1.31	30.8	0.7	0.75	0.75	1.33	34.3
0.8	0.25	0.75	1.27	31.5	0.8	0.75	0.75	1.40	34.7
0.9	0.25	0.75	1.40	35.4	0.9	0.75	0.75	1.44	35.0
				Channe	els [010]			
0.85	0.00	0.25	1.36	31.0	0.85	0.50	0.25	1.26	32.5
0.85	0.05	0.25	1.23	28.0	0.85	0.55	0.25	1.36	33.4
0.85	0.10	0.25	1.18	30.5	0.85	0.60	0.25	1.37	31.3
0.85	0.15	0.25	1.28	32.7	0.85	0.65	0.25	1.31	30.6
0.85	0.20	0.25	1.32	32.5	0.85	0.70	0.25	1.29	30.7
0.85	0.25	0.25	1.36	34.4	0.85	0.75	0.25	1.34	33.9
0.85	0.30	0.25	1.47	36.4	0.85	0.80	0.25	1.46	35.6
0.85	0.35	0.25	1.54	36.0	0.85	0.85	0.25	1.48	35.1
0.85	0.40	0.25	1.39	31.5	0.85	0.90	0.25	1.43	33.8
0.85	0.45	0.25	1.23	28.9	0.85	0.95	0.25	1.38	34.4