In situ reduction from CuX_2 (X = Br, Cl) to Cu(I) halide clusters

based on ligand bis(2-methylimidazo-1-yl)methane

Chuan-Ming Jin^{a, *}, Zhu Zhu^a, Ming-Xia Yao^a, Xiang-Gao Meng^b

a, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Environmental Engineering, Hubei Normal University, Huangshi, Hubei 435002, P. R. China; b, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, Central China Normal University, Wuhan 430079, P. R. China

Experimental Section

Materials and Measurements. All chemicals were obtained commercially available and used as received without further purification. Ligand bis(imidazol-1-yl)methane (BIM) and bis(2-methylimidazol-1-yl)methane (2-mBIM) were prepared by literature's methods. The FT-IR spectra were recorded from KBr pellets in the range 4500-500 cm⁻¹ on a Nicolet 5700 infrared spectrometer. Thermogravimetric analysis (TGA) measurements were made using a Pyris diamond TG/DTA Thermogravimetric differential Thermal Analyzer. Samples were heated at 10 °C /min from 40 to 700°C in a dynamic nitrogen atmosphere. Elemental analyses were performed on a Perkin-Elmer 2400 CHN elemental analyzer. The photoluminescence measurements were carried out on crystalline samples at room temperature and the spectra were collected with a Hitachi F-4500 spectrophotometer.

Cyclic voltammetric (CV) measurements were carried out using a CHI660 electrochemical workstation (CH Instruments, USA). The cell contained a glassy carbon working electrode, a Pt wire auxiliary electrode, and a saturated calomel electrode (SCE) as reference electrode. A salt bridge (containing supporting electrolyte, 0.1mol/L potassium nitrate dissolved in the solution of 6.0mol/L HCl) was used to connect the SCE with the electrochemistry solution. All experiments were carried out under a nitrogen atmosphere at RT and were uncorrected for junction potentials.

Synthesis of $[Cu_2(2-mBIM)Cl_2]$ (1). The mixture of $CuCl_2 \cdot 2H_2O(85mg, 0.5 mmol)$, 1, 4-benzenedicarboxylic acid (83mg, 0.5mmol), NaOH (40mg, 1.0mmol) and ligand 2-mBIM (89mg, 0.5mmol) were dissolved in the solution of H_2O (8 mL) and ethanol (2ml), and the

Supplementary Material for CrystEngComm This journal is (c) The Royal Society of Chemistry 2009

resulting mixture was transferred and sealed in a 25 mL Teflon-lined stainless steel autoclave, under autogenous pressure at 160°C for 2 days and then slowly cooled to room temperature at a rate of 10°C /h. Light-yellow crystals of [Cu₂(2-mBIM)Cl₂] suitable for X-ray analysis were obtained in 55% yield based on Cu. Anal. Calcd for C₉H₁₂Cl₂Cu₂N₄. C, 28.89; H, 3.23; N, 14.97; Found: C, 29.33; H, 2.74; N, 15.33; IR (KBr, cm ⁻¹): υ = 3119s, 2982w, 1593m, 1544s,1508s,1466m, 1403s, 1387w, 1270s, 1187m, 1145m, 1089w, 1008m, 794w, 744s, 669s, 618w.

Synthesis of [Cu(2-mBIM)Br] (2). The mixture of CuBr₂ (112mg, 0.5mmol), 1, 4-benzenedicarboxylic acid (83mg, 0.5mmol), NaOH (40mg, 1.0mmol) and ligand 2-mBIM (89mg, 0.5mmol) were dissolved in the solution of H₂O (8 mL) and ethanol (2ml), and the resulting mixture was transferred and sealed in a 25 mL Teflon-lined stainless steel autoclave, under autogenous pressure at 160°C for 2 days and then slowly cooled to room temperature at a rate of 10°C /h. Light-yellow crystals of [Cu(2-mBIM)Br] suitable for X-ray analysis were obtained in 65% yield based on Cu. Anal. Calcd for C₉H₁₂BrCuN₄. C, 33.82; H, 3.78; N, 17.53; Found: C, 34.02; H, 3.41; N, 17.51; IR (KBr, cm ⁻¹): v = 3120m, 2978w, 1624m, 1543m, 1503m, 1457m, 1401s, 1263s, 1142m, 1082w, 1001w, 750s, 669m.

Synthesis of [Cu(BIM) (1, 4-BDC)] (3). The mixture of CuCl₂ • 2H₂O(85mg, 0.5 mmol), 1, 4-benzenedicarboxylic acid (1, 4-H₂BDC, 83mg, 0.5mmol), NaOH (40mg, 1.0mmol) and ligand BIM (75mg, 0.5mmol) were dissolved in the solution of H₂O (8 mL) and ethanol (2ml), and the resulting mixture was transferred and sealed in a 25 mL Teflon-lined stainless steel autoclave, under autogenous pressure at 160°C for 2 days and then slowly cooled to room temperature at a rate of 10°C /h. Purple crystals of [Cu(BIM)(1, 4-BDC)] suitable for X-ray analysis were obtained in 59% yield based on Cu. Anal. Calcd for C₁₅H₁₂CuN₄O₄. C, 47.94; H, 3.22; N, 14.91; Found: C, 47.67; H, 2.78; N, 14.76; IR (KBr, cm ⁻¹): v = 3136s, 3031m, 1605s, 1591s, 1559w, 1498s, 1401m, 1378m, 1361s, 1268s, 1228s, 1143w, 1081s, 1017w, 951m, 883w, 826s, 751s, 695m, 655m, 588m.

Figure 1. View of the coordination environment of Cu(I) in 1.

Figure 2. Thermal ellipsoid (30%) plot of 2, showing the coordination environments of the Cu centers.

Supplementary Material for CrystEngComm This journal is (c) The Royal Society of Chemistry 2009

Figure 3. (a) Thermal ellipsoid (30%) plot of **3**, showing the coordination environments of the Cu centers. (b) View of 3D porous network in **3**.

Supplementary Material for CrystEngComm This journal is (c) The Royal Society of Chemistry 2009

Figure 4. Cyclic voltammogram of BIM and 2-mBIM in HCl solution using a glassy carbon

electrode.

Figure 5. Emission spectrum of compound 2 measured in the solid state at room temperature.