Supporting Information

Syntheses, structures, photoluminescence and magnetic properties of five compounds with 1,3,5-benzenetricarboxylate acid and imidazole ligands

Jiao Xu, ^a Zhaorui Pan, ^a Tianwei Wang, ^a Yizhi Li, ^a Zijian Guo, ^a Stuart R. Batten ^b and Hegen Zheng^{*, a, c}

^aState Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093, P. R. China ^bSchool of Chemistry, Monash University, Victoria, 3800, Australia ^cState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China

Complex 1			
Zn1–N1	2.041(3)	Zn1-N4_a	1.993(3)
Zn1–O1	1.952(3)	Zn1–O4_a	1.989(3)
O1-Zn1-O4_b	106.01(13)	01-Zn1-N4_b	113.73(14)
O4_b-Zn1 -N4_b	122.56(13)	01–Zn1–N1	95.47(13)
O4_b-Zn1 -N1	109.33(13)	N4_b— Zn1 —N1	106.33(15)
C23—N4—Zn1_a	131.3(3)	C9–O1–Zn1	116.9(3)
C7 –O4– Zn1_a	105.1(3)	C21-N4 -Zn1_a	122.9(3)
Complex 2			
Zn1–N1	2.009(5)	Zn2—N4_a	2.033(4)
Zn2—N6_b	2.026(5)	Zn1-O1_c	1.992(4)
Zn2—O3_d	1.958(4)	Zn106	1.946(4)
Zn1–O7	1.932(4)	Zn2—O7	1.938(4)
O7—Zn1 —O6	106.01(17)	$O7-Zn1-O1_b$	107.54(17)
O6—Zn1—O1_b	107.94(17)	07— Zn1 —N1	109.04(18)
06— Zn1 —N1	122.53(19)	01_b-Zn1 -N1	103.02(17)
$O7 - Zn2 - O3_e$	129.36(18)	$O7 - Zn2 - N6_c$	114.79(18)
$O3_e$ -Zn2-N6_c	102.15(19)	O7 — Zn2 —N4_a	104.87(18)
O3_e-Zn2 -N4_a	101.04(19)	N6_c-Zn2-N4_a	100.21(18)
C9–N1–Zn1	124.1(4)	C11-N1-Zn1	126.4(4)
C18—N4—Zn2_a	122.1(4)	C19-N4-Zn2_a	131.1(4)
C23-N6-Zn2_b	126.5(4)	C22-N6-Zn2_b	125.3(4)
$C7-O1-Zn1_c$	119.1(3)	C24 –O3 –Zn2_d	109.6(4)
C8 – O6 – Zn1	117.0(4)	Zn107Zn2	130.2(2)
Complex 3			
Zn1_N1	2.042(5)	7n2_N3	2.044(5)
$Z_{n1} = 1$	2.042(3) 2.167(4)	$Zn^2 = N^3$	2.044(3)
Zn2=01	2.107(4) 2.215(4)	$Z_{n1} = 02$	2.003(3)
$Z_{11} = 0.5 a$	2.313(4) 2.062(4)	$Z_{111} = 04_a$	2.063(4) 2.152(2)
$Zn1 = CO_0$	2.003(4)	ZII2-07	2.135(3)
$\sum \frac{1}{2} \frac{-2}{2} \frac{1}{2}$	2.320(0)	$02 7 \pi 1 06 a$	05.12(16)
02-ZnI-NI	10/.91(10)	$02 - 2n1 - 06_c$	95.12(16)
$NI - ZnI - O6_c$	93.27(18)	$02 - 2n1 - 04_d$	108.21(16)
$1N1 - Zn1 - 04_d$	98.00(18)	$U_0 c - Z_{n1} - U_4 d$	149.31(10)
$02 - 2n1 - 03_d$	88.20(15)	$NI - ZnI - O3_d$	155.66(17)
$06_c - 2n1 - 03_d$	103.5/(15)	$U4_d$ -Zn1- $U3_d$	58.90(14)
$02-2n1-027_d$	100.60(17)	NI - ZnI - C2/d	126.8(2)
$06_d - 2n1 - C2/_c$	128.14(19)	$U4_c$ —Zn1—C27_c	29.46(17)
03_c – Znl – $C27_c$	29.49(16)	$N3_e - Zn2 - N3$	180.0

Table S1 Selected Bond Distances (Å) and Angles (deg) for complexes

Supplementary Material for CrystEngComm This journal is (c) The Royal Society of Chemistry 2009

$N3_e - Zn2 - O7_e$	88.72(16)	$O7_e - Zn2 - O7_e$	180.0
N3_e-Zn2-O1	93.21(16)	O7_e-Zn2-O1	86.24(14)
O1-Zn2-O1_e	180.00(16)	O4-C27-Zn1_a	55.2(3)
O3–C27–Zn1_a	65.8(3)	C24-C27-Zn1_a	173.1(5)
C1-N1-Zn1	122.4(4)	C2-N1-Zn1	132.8(4)
C10–N3–Zn2	128.4(4)	C11-N3-Zn2	127.5(4)
C19-O1-Zn2	134.1(4)	C19-O2-Zn1	128.6(4)
C27—O3—Zn1_a	84.7(4)	C27-O4-Zn1_a	95.3(4)
C26-O6-Zn1_b	99.6(4)	Zn2 – O7 – H7B	109.1
Zn2 – O7 – H7C	109.1		
Complex 4			
N1-Ni2	2.016(4)	Ni2-O5_c	2.082(3)
N3-Ni1	2.052(4)	Ni2—O3_b	2.193(3)
Ni1–O7_a	2.075(3)	Ni2-06_c	2.208(3)
Ni1-O1	2.088(3)	Ni2—C5_a	2.448(5)
Ni2—O2	2.037(3)	Ni2–C8_c	2.459(5)
Ni2—O4_b	2.054(3)		
N3-Ni1-N3_a	180.000	07-Ni1-01	86.86(13)
01-Ni1-01_a	180.000(14)	O3_b-Ni2-O6_c	87.28(12)
N3-Ni1-07	92.07(14)	N1-Ni2-O2	101.41(15)
07_a-Ni1-07	180.00(13)	N1-Ni2-O4_b	97.99(15)
N3-Ni1-O1	86.73(13)	O2-Ni2-O4_b	102.57(13)
N1-Ni2-O5_c	90.84(14)	O5_c-Ni2-O3_a	106.98(12)
O2-Ni2-O5_c	92.64(12)	N1-Ni2-O6_c	91.78(14)
O4_b-Ni2-O5_c	160.19(13)	O2-Ni2-O6_c	151.00(12)
N1-Ni2-O3_b	158.92(13)	O4_b-Ni2-O6_c	100.87(12)
O2—Ni2—O3_b	89.06(12)	O5_c-Ni2-O6_c	61.10(11)
O4_b-Ni2-O3_b	61.55(12)	N1-Ni2-C5_b	128.27(16)
O4-C5-Ni2_d	57.0(2)	O2-Ni2-C5_b	98.57(14)
O3-C5-Ni2_d	63.3(3)	O5_c-Ni2-C5_b	135.11(15)
C4-C5-Ni2_d	173.5(3)	O6_c-Ni2-C5_b	92.88(14)
O6-C8-Ni2_e	63.6(2)	N1-Ni2-C8_c	88.86(15)
O5-C8-Ni2_e	57.8(2)	O2-Ni2-C8_c	123.23(14)
C7-C8-Ni2_e	169.0(3)	O4_b-Ni2-C8_c	131.10(15)
C10-N1-Ni2	125.6(3)	C21-N3-Ni1	127.6(3)
C11-N1-Ni2	129.0(3)	C19-N3-Ni1	126.4(3)
O3_b-Ni2-C8_c	100.60(14)	C5-O3-Ni2_d	85.9(3)
$O6_c$ – $Ni2$ – $C8_c$	30.48(13)	$C5-O4-Ni2_d$	92.3(3)
$C5_b$ -Ni2-C8 c	117.82(16)	C1 - O2 - Ni2	128.3(3)
C1 - O1 - Ni1	136.5(3)	Ni1-07-H7A	119.8
Ni1-07-H7	109.5		

Complex 5			
Cu1-N1	1.953(3)	Cu1-O5	1.972(2)
Cu2— N3	1.951(3)	Cu2 –O2_a	1.963(3)
Cu2—O3_b	2.024(3)	Cu2—O4_b	2.063(2)
Cu2— O6	2.208(2)	Cu2—C26_b	2.357(4)
N1-Cu1-N1_c	180.000(1)	N1-Cu1-O5	86.97(11)
O5-Cu1-O5_c	180.0	N1-Cu1-O7	92.02(15)
O5–Cu–O7	104.89(13	N3-Cu2-O2_b	92.04(12)
N3-Cu2-O3_d	96.25(12)	O2_b-Cu2-O3_d	154.90(10)
N3— Cu2— O4_d	159.72(13)	O2_a-Cu2-O4_d	103.67(10)
O3_d-Cu2-O4_d	64.24(10)	N3—Cu2—O6	104.72(11)
O2_a— Cu2— O6	94.08(10)	O3_d- Cu2- O6	106.55(10)
O4_d-Cu2-O6	87.12(10)	N3—Cu2—C26_d	128.17(14)
O2_a— Cu2— C26_d	131.11(11)	O3_d-Cu2-C26_d	32.45(10)
$O4_d$ - $Cu2$ - $C26_d$	31.89(11)	O6-Cu2-C26_d	99.73(11)
C24—C26—Cu2_b	171.9(3)	C3-N1-C1	105.6(3)
C3-N1-Cu1	125.2(3)	C1-N1-Cu1	128.7(3)
C12–N3–Cu2	125.0(3)	C10–N3–Cu2	130.2(3)
C19 –O2– Cu2_e	106.5(2)	C27–O5–Cu1	124.2(2)
C27—O6—Cu2	134.3(2)		

Symmetry transformations used to generate equivalent atoms:

 $a = x - \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}; b = x + \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}.$ (compord 1)

a = -x + 2, -y + 1, -z + 1; b = -x + 2, -y + 1/2, -z + 3/2; c = -x + 2, -y - 1/2, -z + 3/2; d = -x + 3, -y - 1/2, -z + 3/2; e = -x + 3, -y + 1/2, -z + 3/2. (compond 2)

a = x + 1, y, z; b = x + 1/2, -y + 1/2, z + 1/2; c = x - 1/2, -y + 1/2, z - 1/2; d = x - 1, y, z; e = -x, -y, -z+1 (compond 3)

a = -x, -y + 1, -z; b= x - 2, y, z; c= x - 1/2, -y + 1/2, z -1/2; d=x + 2, y, z; e=x + 1/2, -y + 1/2, z + 1/2. (compond 4)

a = x - 1/2, -y + 1/2, z - 1/2; b = x + 1, y, z; c = -x + 1, -y + 1, -z; d = x - 1, -y + 1/2, z + 1/2; e = x - 1/2, -y + 1/2, z + 1/2.(compond 5)

Figure S1. An ORTEP drawing of 5 showing 30% ellipsoid probability (hydrogen atoms are omitted for clarity). Symmetry codes: #1 = 1 - x, 1 - y, -z; #2 = -0.5 + x, 0.5 -y, -0.5 + z; #3 = -1 + x, y, z; #4 = 1 + x, y, z; #5 = 0.5 + x, 0.5 - y, 0.5 + z; #6 = 2 - x, 1 - y, -1-z; #7 = 1 + x, y, -1 + z; #8 = 2 - x, -y, -z.

Figure S2. Emission spectra of free H₃btc,1,3-bix and compound **1** in the solid state at room temperature.

Figure S3. Emission spectra of free H_3 btc,timp and compound 2 in the solid state at room temperature.

Figure S4. Emission spectra of free H₃btc, 1,4-biby and compound **3** in the solid state at room temperature.

Figure S5. TGA plot of compounds **1** – **5.**

Figure S6. Experimental (bottom) and simulated (top) powder X-ray diffraction patterns of compound **1** at 293K.

Figure S7. Experimental (bottom) and simulated (top) powder X-ray diffraction patterns of compound **2** at 293K.

Figure S8. Experimental (bottom) and simulated (top) powder X-ray diffraction patterns of compound **3** at 293K.

Figure S9. Experimental (bottom) and simulated (top) powder X-ray diffraction patterns of compound **4** at 293K.

Figure S10. Experimental (bottom) and simulated (top) powder X-ray diffraction patterns of compound **5** at 293K.