Support materials

Coordination Polymers of Biphenyl-2,4,2',4'-Tetracarboxylic

Acid—Synthesis, Structures and Adsorption Properties

Juan Jia^a, Min Shao^b, Tiantian, Jia^a, Shourong Zhu^a*, Yongmei^a Zhao, Feifei Xing^a and Mingxing Li^a

^a Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China ^b Instrumental Analysis and Research Center, Shanghai University, Shanghai 200444, China email: <u>shourongzhu@shu.edu.cn</u>; Fax : +86-21-60947570 ; Tel : +86-21-66132403

1

Fig. s1. IR spectra of complex 1~8

Fig. s2. TG of $[Zn(2,4-H_2bptc)(2,2'-bipy) \cdot H_2O]_n^{-1}$ (1)

Fig. s3. TG of { [Zn₃(2, 4-Hbptc)₂(2,2'-bpy)₂·]·2H₂O } $_{n}^{1}$ (2)

Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry 2010

Fig. s4. TG of $\{[Zn_2(2,4-bptc)(2,2'-bpy)]\cdot(2,2'-bpy)_{0.5}\cdot(H_2O)\}_n^3$ (3) in air (top) and nitrogen (bottom)

Fig. s5. TG curve of Complex $\{[Zn_2(2,4-bptc)(2,2'-bpy)_2](H_2O)\}_n^3$ (4)

Fig. S6. TG curve of $\{ [Cd_2 \cdot (2,4-bptc) \cdot (2,2-bpy)_2 \cdot H_2O] \cdot H_2O \}_n^3$ (5)

Fig. s7. TG curve of $\{[Zn_2 \cdot (2,4-bptc) \cdot (phen) \cdot H_2O]_n^3(6)\}$

Fig. s8. TG of $\{[Co_5(2,4-bptc)_2(\mu_3-OH)_2(\mu_2-H_2O)_2(\mu_1-H_2O)_2]\cdot 2H_2O\}_n^3$ (7) and $\{[Co_5(2,4-bptc)_2(\mu_3-OH)(\mu_2-H_2O)_2(\mu_1-H_2O)_2]\cdot 6H_2O\}_n^3$ (8).

Fig. s9. IR of $\{[Co_5(2,4-bptc)_2(\mu_3-OH)(\mu_2-H_2O)_2(\mu_1-H_2O)_2]\cdot 6H_2O\}_n^3$ (8) (red) and ethanol adsorbed dehydrated sample of 8 (blue)

Scheme s1. Coordination mode of 3,4-bptc⁴⁻ complexes

1. Ji-Jiang Wang, Lei Gou, et al, Crystal Growth & Design, 2007, 7, 1514-1521.

- 2. Shourong Zhu, Hui Zhang et al, Transition Met Chem 2008, 33,669-680.
- 3. Guo-Ping Yang, Yao-Yu Wang et al, Eur. J. Inorg. Chem. 2007, 3892–3898.
- 4. Xin-Long Wang, Chao Qin, et al, Eur. J. Inorg. Chem. 2005, 3418-3421.
- 5. Li-Xin Sun, Yan Qi, et al, Crystal Growth & Design, 2009, 9, 2995-2998.
- 6. Danfeng Weng, Xiangjun Zheng, et al, *Dalton Trans.*, 2007, 4822–4828.
- 7 .Ji-Jiang Wang, Meng-Lin Yang et al, Z. Anorg. Allg. Chem. 2007, 341-345

Scheme s2 Coordination mode of 3,5-bptc⁴⁻ complexes

- 1. Banglin Chen, Nathan W. Ockwig, et al, *Inorg. Chem.*, 2005, 44, 181-183.
- 2.Banglin Chen, Nathan W. Ockwig, et al, Angew. Chem. Int. Ed. 2005, 44, 4745 -4749
- 3. Xiang Lin, Irvin Telepeni et al, J. Am. Chem. Soc. 2009, 131, 2159-2171

Zn(1)-O(1)	1.978(2)	Zn(1)-O(4)#1	2.015(3)
Zn(1)-N(1)	2.103((3)	Zn(1)-O(1W)	2.104(3)
Zn(1)-N(2)	2.129((3)		
O(1)-Zn(1)-O(4	4)#1	108.32(11)	O(1)-Zn(1)-N((1) 111.83(12)
O(4)#1-Zn(1)-N	N(1)	138.66(12)	O(1)-Zn(1)-O((1W) 91.69(11)
O(4)#1-Zn(1)-0	D(1W)	95.37(12)	N(1)-Zn(1)-O((1W) 92.90(13)
O(1)-Zn(1)-N(2	2)	96.22(11)	O(4)#1-Zn(1)-1	-N(2) 89.18(12)
N(1)-Zn(1)-N(2	2)	77.29(13)	O(1W)-Zn(1)-	-N(2) 169.16(12)

Table s1. Selected bond length [Å] and angle [°] of complex 1

#1 x-1/2,-y+1/2,z+1/2 #2 x+1/2,-y+1/2,z-1/2

Table S2. Hydrogen bonds for 1 [Å and $^{\circ}$].

D-HA	d (D-H)	d(HA)	d(DA)	<(DHA)	
O(6)-H(6A)O(3)#3	0.82	1.77	2.566(4)	163.6	
O(7)-H(7)O(5)#4	0.82	2.23	2.856(5)	134.0	
O(7)-H(7)O(1)#4	0.82	2.67	3.268(6)	131.1	
O(1W)-H(1WA)O(2)	0.82	1.87	2.590(4)	146.3	
O(1W)-H(1WB)O(5)#5	0.89(5)	1.98(5)	2.830(4)	159(4)	

Symmetry transformations used to generate equivalent atoms:

#1 x-1/2,-y+1/2,z+1/2 #2 x+1/2,-y+1/2,z-1/2 #3 x+1/2,-y+1/2,z+1/2 #4 -x+1/2,y-1/2,-z+3/2 #5 x-1,y,z

Zn(1)-O(3)#1	2.004(3)	Zn(1)-O(5)#2	2.008(3)	
Zn(1)-N(2)	2.046(4)	Zn(1)-O(1)	2.055(3)	
Zn(1)-N(1)	2.125(4)	Zn(2)-O(4)#3	2.019(3)	
Zn(2)-O(4)#1	2.019(3)	Zn(2)-O(5)#2	2.171(3)	
Zn(2)-O(5)	2.171(3)	Zn(2)-O(1)#2	2.196(3)	
Zn(2)-O(1)	2.196(3)	Zn(2)-Zn(1)#2	3.1226(7))
O(3)#1-Zn(1)-O(5))#2 90.35(13) O(3)#1-Zn(1)-N(2)	95.23(15)
O(5)#2-Zn(1)-N(2)	141.06(15) O(3)#1-Zn(1) - O(1)	93.81(13)
O(5)#2-Zn(1)-O(1)	84.54(13)	N(2)-Zn(1)-0	D(1)	133.20(15)
O(3)#1-Zn(1)-N(1)	173.09(15)	O(5)#2-Zn(1)-N(1)	95.61(15)
N(2)-Zn(1)-N(1)	77.93(16)	O(1)-Zn(1)-1	N(1)	90.23(14)
O(4)#3-Zn(2)-O(4)	#1 180	O(4)#3-Zn(2	2)-O(5)#2	89.92(12)
O(4)#1-Zn(2)-O(5)	#2 90.08(12)	O(4)#3-Zn(2)-O(5)	90.08(12)
O(4)#1-Zn(2)-O(5)	89.92(12)	O(5)#2-Zn(2)-O(5)	180
O(4)#3-Zn(2)-O(1)	#2 87.24(12)	O(4)#1-Zn(2)-O(1)#2	92.76(12)
O(5)#2-Zn(2)-O(1)	#2 102.49(12)	O(5)-Zn(2)-0	D(1)#2	77.51(12)
O(4)#3-Zn(2)-O(1)	92.76(12)	O(4)#1-Zn(2) - O(1)	87.23(12)
O(5)#2-Zn(2)-O(1)	77.51(12)	O(5)-Zn(2)-0	D(1)	102.49(12)
O(1)#2-Zn(2)-O(1)	180	O(4)#3-Zn(2)	-Zn(1)#2	76.05(9)
O(4)#1-Zn(2)-Zn(1))#2 103.95(9)	O(5)#2-Zn(2)-	Zn(1)#2	140.30(8)
O(5)-Zn(2)-Zn(1)#2	2 39.70(8)	O(1)#2-Zn(2))-Zn(1)#2	41.01(8)
O(1)-Zn(2)-Zn(1)#2	2 138.99(8))		

Table s3. Selected bond length [Å] and angle $[\circ]$ of complex 2.

Symmetry transformations used to generate equivalent atoms: #1 x-1,y,z #2 -x+1,-y+1,-z+1 #3 -x+2,-y+1,-z+1 #4 x+1,y,z

Zn(1)-O(2)#1	1.9	36(2)	Zr	n(1)-O(3)#2	1.	940(2)
Zn(1)-O(7)	1.9	79(2)	Zr	n(1)-O(6)#3	2.	031(2)
Zn(1)-O(8)	2.4	12(3)	Zr	n(2)-O(5)#4	1.9	93(3)
Zn(2)-O(1)	2.0	33(2)	Zr	n(2)-O(4)#5	2.0	42(3)
Zn(2)-N(2)	2.0	98(3)	Zr	n(2)-N(1)	2.1	46(3)
O(2)#1-Zn(1)-O(3)#2	116.28	(11)	O(2)#1-Zn(1)-	·O(7)	113.02(12)
O(3)#2-Zn(1)-O(7)	123.76	(11)	O(2)#1-Zn(1)-	-O(6)#3	105.49(11)
O(3)#2-Zn(1)-O(6)#3	97.29(11)	O(7)-Zn(1)-O	(6)#3	94.15(11)
O(2)#1-Zn(1)-O(8)	93.57(12)	O(3)#2-Zn(1)	-O(8)	92.68(11)
O(7)-Zn(1)-O(8)		58.58(10)	O(6)#3-Zn(1)	-O(8)	151.61(10)
O(5)#4-Zn(2)-O(1)	96.14(11)	O(5)#4-Zn(2)-	-O(4)#5	125.96(10)
O(1)-Zn(2)-O(4)#	5	95.25(11)	O(5)#4-Zn(2)-	-N(2)	107.33(12)
O(1)-Zn(2)-N(2)		90.61(12)	O(4)#5-Zn(2)	-N(2)	125.17(12)
O(5)#4-Zn(2)-N(1)	95.49(12)	O(1)-Zn(2)-N	(1)	164.95(12)
O(4)#5-Zn(2)-N(1)	85.58(12)	N(2)-Zn(2)-N	(1)	76.80(14)

Table s4. Selected bond length [Å] and angle $[\circ]$ of complex **3**.

#1 x-1/2,-y+1/2,z-1/2 #2 -x+2,-y,-z #3 -x+1,-y,-z #4 -x+3/2,y+1/2,-z+1/2 #5 -x+5/2,y+1/2,-z+1/2 #6 -x,-y,-z+1 #7 x+1/2,-y+1/2,z+1/2 #8 -x+5/2,y-1/2,-z+1/2 #9 -x+3/2,y-1/2,-z+1/2

Zn(1)-O(3)#1	1.959(2)	Zn(1)-O(5)	1.99	98(2)
Zn(1)-O(1)#2	2.086(2)	Zn(1)-N(2)	2.12	20(3)
Zn(1)-N(1)	2.126(2)	Zn(2)-O(8)#3	1.96	67(2)
Zn(2)-O(2)#2	2.014(2)	Zn(2)-O(6)	2.08	38(2)
Zn(2)-N(3)	2.099(3)	Zn(2)-N(4)	2.13	31(3)
O(3)#1-Zn(1)-O(5)	110.41(9)	O(3)#1-Zn(1)-O	(1)#2	95.59(8)
O(5)-Zn(1)-O(1)#2	90.08(9)	O(3)#1-Zn(1)-N	(2)	101.54(9)
O(5)-Zn(1)-N(2)	148.03(9)	O(1)#2-Zn(1)-N	(2)	87.72(9)
O(3)#1-Zn(1)-N(1)	111.97(9)	O(5)-Zn(1)-N(1)		90.84(10)
O(1)#2-Zn(1)-N(1)	150.12(9)	N(2)-Zn(1)-N(1))	76.01(10)
O(8)#3-Zn(2)-O(2)#	2 96.82(9)	O(8)#3-Zn(2)-O	(6)	104.76(9)
O(2)#2-Zn(2)-O(6)	86.55(9)	O(8)#3-Zn(2)-N	(3)	108.19(9)
O(2)#2-Zn(2)-N(3)	154.99(9)	O(6)-Zn(2)-N(3))	87.33(10)
O(8)#3-Zn(2)-N(4)	102.41(10)	O(2)#2-Zn(2)-N	(4)	98.03(10)
O(6)-Zn(2)-N(4)	151.70(9)	N(3)-Zn(2)-N(4))	76.73(10)

Table s5. Selected bond length [Å] and angle $[\circ]$ of complex 4

#1 -x,y+1/2,-z+1/2 #2 x,-y+1/2,z-1/2 #3 -x+1,-y+1,-z+1 #4 x,-y+1/2,z+1/2 #5 -x,y-1/2,-z+1/2

Cd(1)-O(8)#1	2.274(3)	Cd(1)-O(1)	2.328(3)
Cd(1)-N(2)	2.332(4)	Cd(1)-N(1)	2.363(3)
Cd(1)-O(6)#2	2.361(4)	Cd(1)-O(5)#2	2.516(3)
Cd(1)-O(7)#1	2.577(3)	Cd(2)-O(2)	2.216(3)
Cd(2)-O(1W) 2	.229(3)	Cd(2)-O(3)#3	2.285(3)
Cd(2)-N(3) 2	. 3 14(4)	Cd(2)-N(4)	2.352(4)
Cd(2)-O(4)#3 2	2.455(3)		
O(8)#1-Cd(1)-O(1)	90.43(13)	O(8)#1-Cd(1)-N(2)	132.76(13)
O(1)-Cd(1)-N(2)	127.93(13)	O(8)#1-Cd(1)-N(1)	96.51(14)
O(1)-Cd(1)-N(1)	79.60(13)	N(2)-Cd(1)-N(1)	69.51(13)
O(8)#1-Cd(1)-O(6)#2	91.60(13)	O(1)-Cd(1)-O(6)#2	111.07(14)
N(2)-Cd(1)-O(6)#2	97.18(14)	N(1)-Cd(1)-O(6)#2	166.61(14)
O(8)#1-Cd(1)-O(5)#2	133.33(12)	O(1)-Cd(1)-O(5)#2	78.24(13)
N(2)-Cd(1)-O(5)#2	86.14(13)	N(1)-Cd(1)-O(5)#2	124.78(13)
O(6)#2-Cd(1)-O(5)#2	53.11(12)	O(8)#1-Cd(1)-O(7)	#1 53.30(12)
O(1)-Cd(1)-O(7)#1	139.98(13)	N(2)-Cd(1)-O(7)#1	80.50(12)
N(1)-Cd(1)-O(7)#1	87.64(13)	O(6)#2-Cd(1)-O(7)	#1 88.70(13)
O(5)#2-Cd(1)-O(7)#1	137.50(12)	O(2)-Cd(2)-O(1W)	86.15(13)
O(2)-Cd(2)-O(3)#3	139.02(12)	O(1W)-Cd(2)-O(3)	#3 93.59(13)
O(2)-Cd(2)-N(3)	87.50(14)	O(1W)-Cd(2)-N(3)	152.32(16)
O(3)#3-Cd(2)-N(3)	108.62(13)	O(2)-Cd(2)-N(4)	129.53(14)
O(1W)-Cd(2)-N(4)	93.26(16)	O(3)#3-Cd(2)-N(4)	91.42(14)
N(3)-Cd(2)-N(4)	70.49(16)	O(2)-Cd(2)-O(4)#3	89.65(12)
O(1W)-Cd(2)-O(4)#3	118.78(14)	O(3)#3-Cd(2)-O(4)	#3 54.89(10)
N(3)-Cd(2)-O(4)#3	88.07(14)	N(4)-Cd(2)-O(4)#3	132.25(14)

Table s6. Selected bond length [Å] and angle [°] of complex 5

Symmetry transformations used to generate equivalent atoms: #1 -x+3/2,y+1/2,-z+3/2 #2 x-1,y,z #3 -x+1,-y+1,-z+1 #4 -x+3/2,y-1/2,-z+3/2

Table s7. Hydrogen bonds for complex 5

#5 x+1,y,z

D-H A	d (D-H)	d(HA)	d(DA)	<(DHA)
O(1W)-H(1WB)O(3)#2	0.85	1.84	2.667(5)	163.1
O(1W)-H(1WA)O(5)#2	0.85	1.97	2.682(5)	140.5

Symmetry transformations used to generate equivalent atoms:

#1 -x+3/2,y+1/2,-z+3/2 #2 x-1,y,z #3 -x+1,-y+1,-z+1 #4 -x+3/2,y-1/2,-z+3/2 #5 x+1,y,z

Zn(1)-O(1)	1.9808(18)	Zn(1)-N(1)	2.045(2)
Zn(1)-O(4)#1	2.063(2)	Zn(1)-N(2)	2.084(2)
Zn(1)-O(3)#1	2.1861(18)	Zn(1)-C(20)#1	2.448(3)
Zn(2)-O(7)#2	2.0102(17)	Zn(2)-O(8)#3	2.0349	(16)
Zn(2)-O(2)	2.0514(18)	Zn(2)-O(1W)	2.100(2	2)
Zn(2)-O(5)	2.1110(18)	Zn(2)-Zn(2)#4	3.1462	(7)
O(1)-Zn(1)-N(1)	106.37(8)	O(1)-Zn(1)-O(4	4)#1	111.86(8)
N(1)-Zn(1)-O(4)#1	140.85(9)	O(1)-Zn(1)-N(2	2)	96.92(8)
N(1)-Zn(1)-N(2)	81.16(9)	O(4)#1-Zn(1)-N	N(2)	101.88(8)
O(1)-Zn(1)-O(3)#1	109.07(7)	N(1)-Zn(1)-O(3	3)#1	98.21(8)
O(4)#1-Zn(1)-O(3)#	1 61.79(7)	N(2)-Zn(1)-O(3	3)#1	152.90(8)
O(1)-Zn(1)-C(20)#1	112.65(8)	N(1)-Zn(1)-C(2	20)#1	123.19(9)
O(7)#2-Zn(2)-O(8)#	3 153.59(7)	O(7)#2-Zn(2)-0	D(2)	106.37(7)
O(8)#3-Zn(2)-O(2)	99.87(7)	O(7)#2-Zn(2)-0	D(1W)	92.27(8)
O(8)#3-Zn(2)-O(1W	7) 94.16(7)	O(2)-Zn(2)-O(1	W)	82.33(8)
O(7)#2-Zn(2)-O(5)	86.02(7)	O(8)#3-Zn(2)-0	D(5)	84.69(7)
O(2)-Zn(2)-O(5)	104.22(7)	O(1W)-Zn(2)-O	D(5)	173.44(7)

Table s8. Selected bond length [Å] and angle [°] of complex 6

#1 -x-1/2,y-1/2,-z+1/2 #2 -x+1,-y,-z+1 #3 x-1,y,z #4 -x,-y,-z+1 #5 -x-1/2,y+1/2,-z+1/2 #6 x+1,y,z

D-H A	d (D-H)	d(HA)	d(DA)	<(DHA)	
O(1W)-H(1WA)O(3)#1	0.86(4)	2.01(4)	2.851(3)	167(3)	
O(1W)-H(1WB)O(5)#4	0.82	2.52	2.935(3)	112.6	
O(1W)-H(1WB)O(6)#4	0.82	1.86	2.667(3)	169.1	

Table s9. Hydrogen bonds for complex 6 [Å and deg.].

Symmetry transformations used to generate equivalent atoms: #1 -x-1/2,y-1/2,-z+1/2 #2 -x+1,-y,-z+1 #3 x-1,y,z #4 -x,-y,-z+1 #5 -x-1/2,y+1/2,-z+1/2 #6 x+1,y,z

Co(1)-O(4)#1	2.073(4)	Co(1)-O(4)#2	2.073(4)	
Co(1)-O(5)#3	2.142(4)	Co(1)-O(5)	2.142(4)	
Co(1)-O(1)	2.292(4)	Co(1)-O(1)#3	2.292(4)	
Co(2)-O(3)#2	2.028(4)	Co(2)-O(7)#4	2.042(5)	
Co(2)-O(1W)	2.045(4)	Co(2)-O(5)#3	2.104(4)	
Co(2)-O(1)	2.121(4)	Co(2)-O(2W)#5	2.322(4)	
Co(3)-O(2)#5	2.049(5)	Co(3)-O(1W)#5	2.086(4)	
Co(3)-O(3W)	2.086(4)	Co(3)-O(8)#4	2.104(4)	
Co(3)-O(1W)	2.108(4)	Co(3)-O(2W)	2.197(4)	
O(4)#1-Co(1)-O(4)#2 180.0	O(4)#1-Co(1)-O(5)	92.27(16)
O(4)#2-Co(1)-O(5) 87.73(16)	O(4)#1-Co(1)	-O(5)#3	87.73(16)
O(4)#2-Co(1)-O(5)#3 92.27(16)	O(5)-Co(1)-O	(5)#3	180.0
O(4)#1-Co(1)-O(1)#3 94.98(15)	O(4)#2-Co(1)	-O(1)#3	85.02(15)
O(5)-Co(1)-O(1)#3	3 73.31(15)	O(5)#3-Co(1)	-O(1)#3	106.69(15)
O(4)#1-Co(1)-O(1) 85.02(15)	O(4)#2-Co(1)	-O(1)	94.98(15)
O(5)-Co(1)-O(1)	106.69(15)	O(5)#3-Co(1)	-O(1)	73.31(15)
O(1)#3-Co(1)-O(1) 180.0	O(3)#2-Co(2)-O(7)#4	87.89(19)
O(3)#2-Co(2)-O(1	W) 95.78(17)	O(7)#4-Co(2)	-O(1W)	97.98(17)
O(3)#2-Co(2)-O(5)#3 92.57(16)	O(7)#4-Co(2)	-O(5)#3	88.79(17)
O(1W)-Co(2)-O(5)#3 169.41(16	6) O(3)#2-Co(2)	-O(1)	87.07(17)
O(7)#4-Co(2)-O(1) 165.32(17	7) $O(1W)-Co(2)$	-O(1)	96.23(16)
O(5)#3-Co(2)-O(1) 77.68(16)	O(3)#2-Co(2)	-O(2W)#5	170.74(17)
O(7)#4-Co(2)-O(2	W)#5 88.78(1	17) O(1W)-Co(2)	-O(2W)#5	76.13(15)
O(5)#3-Co(2)-O(2	W)#5 96.00(1	15) O(1)-Co(2)-O	(2W)#5	98.18(16)
O(2)#5-Co(3)-O(3	W) 86.00(1	19) O(2)#5-Co(3)	-O(1W)#5	97.91(17)
O(3W)-Co(3)-O(1	W)#5 170.48	(18) O(2)#5-Co(3)-O(8)#4	91.27(19)
O(3W)-Co(3)-O(8)#4 99.79(1	19) O(1W)#5-Co	o(3)-O(8)#4	88.83(17)
O(2)#5-Co(3)-O(1	W) 177.42(1	18) O(3W)-Co(3)-O(1W)	91.63(17)
O(1W)#5-Co(3)-O	(1W) 84.26	(16) O(8)#4-Co(3)-O(1W)	90.16(17)
O(2)#5-Co(3)-O(2	W) 91.76	(18) O(3W)-Co(3)-O(2W)	93.11(18)
O(1W)#5-Co(3)-O	(2W) 78.16	(16) O(8)#4-Co(3)-O(2W)	166.92(18)
O(1W)-Co(3)-O(2	W) 87.32	(16)		

Table s10. Selected bond length [Å] and angle [°] of complex 7

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y,-z+2 #2 x+1,y,z #3 -x+2,-y,-z+2 #4 -x+5/2,y-1/2,-z+3/2 #5 -x+2,-y,-z+1 #6 x-1,y,z #7 -x+5/2,y+1/2,-z+3/2

Co(1)-O(7)#1	2.012(3)	Co(1)-O(2W)#2	2.06	0(3)
Co(1)-O(1)	2.065(3)	Co(1)-O(4)#3	2.10	07(3)
Co(1)-O(5)#4	2.121(3)	Co(1)-O(1W)	2.30	0(3)
Co(2)-O(8)#5	2.013(3)	Co(2)-O(8)#6	2.01	3(3)
Co(2)-O(5)	2.168(3)	Co(2)-O(5)#7	2.16	58(3)
Co(2)-O(4)	2.194(3)	Co(2)-O(4)#7	2.19	94(3)
Co(3)-O(2)	2.038(3)	Co(3)-O(2W)	2.05	6(3)
Co(3)-O(6)#8	2.104(3)	Co(3)-O(2W)#2	2.11	6(3)
Co(3)-O(3W)	2.140(4)	Co(3)-O(1W)	2.17	6(3)
O(7)#1-Co(1)-O(2W)#2	2 98.95(12)	O(7)#1-Co(1)-O(1))	86.99(13)
O(2W)#2-Co(1)-O(1)	91.22(12)	O(7)#1-Co(1)-O(4))#3	91.13(12)
O(2W)#2-Co(1)-O(4)#3	169.91(12)	O(1)-Co(1)-O(4)#3	;	88.95(12)
O(7)#1-Co(1)-O(5)#4	88.85(12)	O(2W)#2-Co(1)-O	(5)#4	101.96(11)
O(1)-Co(1)-O(5)#4	166.65(12)	O(4)#3-Co(1)-O(5)#4	78.45(11)
O(7)#1-Co(1)-O(1W)	176.73(13)	O(2W)#2-Co(1)-O	(1W)	77.83(11)
O(1)-Co(1)-O(1W)	93.59(12)	O(4)#3-Co(1)-O(1	W)	92.09(11)
O(5)#4-Co(1)-O(1W)	91.29(11)	O(8)#5-Co(2)-O(8)	#6	180.0
O(8)#5-Co(2)-O(5)	87.02(12)	O(8)#6-Co(2)-O(5)	92.98(12)
O(8)#5-Co(2)-O(5)#7	92.98(12)	O(8)#6-Co(2)-O(5)#7	87.01(12)
O(5)-Co(2)-O(5)#7	180.00(5)	O(8)#5-Co(2)-O(4)	83.93(11)
O(8)#6-Co(2)-O(4)	96.07(11)	O(5)-Co(2)-O(4)		104.40(11)
O(5)#7-Co(2)-O(4)	75.60(11)	O(8)#5-Co(2)-O(4))#7	96.07(11)
O(8)#6-Co(2)-O(4)#7	83.93(11)	O(5)-Co(2)-O(4)#7	7	75.60(11)
O(5)#7-Co(2)-O(4)#7	104.40(11)	O(4)-Co(2)-O(4)#7	7	179.998(1)
O(2)-Co(3)-O(2W)	177.74(14)	O(2)-Co(3)-O(6)#8	3	85.21(13)
O(2W)-Co(3)-O(6)#8	96.41(12)	O(2)-Co(3)-O(2W)	#2	98.59(12)
O(2W)-Co(3)-O(2W)#2	82.83(12)	O(6)#8-Co(3)-O(2	W)#2	96.08(12)
O(2)-Co(3)-O(3W)	85.07(15)	O(2W)-Co(3)-O(3	W)	93.34(14)
O(6)#8-Co(3)-O(3W)	89.97(15)	O(2W)#2-Co(3)-O	(3W)	173.15(14)
O(2)-Co(3)-O(1W)	87.10(12)	O(2W)-Co(3)-O(1	W)	91.45(12)
O(6)#8-Co(3)-O(1W)	170.46(13)	O(2W)#2-Co(3)-O	(1W)	79.50(11)
O(3W)-Co(3)-O(1W)	94.98(14)			

Table s11. Selected bond length [Å] and angle $[\circ]$ of complex 8

Symmetry transformations used to generate equivalent atoms: #1 -x+5/2,y-1/2,-z+3/2 #2 -x+1,-y+1,-z+1 #3 x-1/2,-y+3/2,z+1/2 #4 -x+3/2,y-1/2,-z+3/2 #5 x-1,y,z #6 -x+3,-y+2,-z+1 #7 -x+2,-y+2,-z+1 #8 x-1/2,-y+3/2,z-1/2 #9 x+1/2,-y+3/2,z-1/2 #10 -x+3/2,y+1/2,-z+3/2 #11 x+1/2,-y+3/2,z+1/2 #12 -x+5/2,y+1/2,-z+3/2 #13 x+1,y,z