Supplementary Information

Title: Modelling the interaction of a Hyp-Pro-Gly tri-peptide with hydroxyapatite in an aqueous environment

Authors: Neyvis Almora-Barrios^{*1} and Nora H. de Leeuw^{1, 2}

Surface Models

Having optimized the HA bulk structure, we have used the METADISE code¹ to create the surfaces, which were subsequently optimised using the molecular dynamics simulations in vacuum. In this study, we have concentrated on two of the most significant surfaces of the apatite bone mineral, namely the (0001) and $(01\overline{1}0)$ surfaces. These two surfaces are important in the morphology of the apatite mineral platelets and there is experimental evidence that these faces act as the binding site for many ionic species, including small molecules, polymers and anionically-modified cell surfaces^{2, 3}.

Figure S1. Relaxed surfaces of hydroxyapatite: (a) PO_4 -Ca-PO₄-PO₄-Ca-Ca termination of the (0001) surface and (b) Ca-Ca in the bottom and (OH-OH-Ca-Ca) in the top of the (0110) surface (Ca = green, O = red, P = purple, H = white).

Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry 2009

Figure S2. Calculated lowest energy structures of (a) glycine, (b) proline, (c) hydroxyproline, showing intramolecular hydrogen-bonding (C = grey, O = red, N = blue, H = white).

Definition of Atom Types

The peptide chain was constructed by linking the amino acids residues glycineproline-hydroxyproline, which are a important residues of collagen type I. Figure S1 schematically showed the definition of atoms that were used in MD simulation.

Figure S3 Schematic drawing of (⁺H₂N-Hydroxyproline-Proline- Glycine-COO⁻) peptide structure.

Ion	Charges (e)		Core-shell	Commonts
1011	Core	Shell	interaction eV $Å^2$	Comments
Hydroxyapatite				de Leeuw et al.
Са	+2.000			
Р	+1.180			
Phosphate oxygen (O2)	+0.587	-1.632	507.4000	
Hydroxy oxygen (O1)	+0.900	-2.300	74.92038	
Hydroxy hydrogen (H1)	+0.400			
Water				TIP3P

Oxygen (OW)	-0.8340	
Hydrogen (HW)	+0.4170	
Hydroxyproline		AMBER
N	-0.2548	
CA	+0.0047	
С	+0.5896	
0	-0.5748	
CB	-0.0032	
CG	+0.0908	
CD	-0.0081	
OD	-0.5930	
На	+0.1135	
Hb	+0.1135	
Hg	+0.1135	
Hd	+0.1135	
НО	+0.4588	
H	+0.3045	
Proline		AMBER
N	-0.2548	
CA	-0.0266	
С	+0.5896	
0	-0.5748	
CB	-0.0070	
CG	+0.0189	
CD	+0.0192	
На	+0.0641	
Hb	+0.0253	
Hg	+0.0213	
Hd	+0.0391	
Glycine		AMBER
N	-0.3821	
CA	-0.2493	
С	+0.7231	
0	-0.7855	
На	+0.1056	
Н	+0.2681	

The HA short-range interactions were described by an effective Buckingham potential (buck):

$$\Phi_{ij}(r_{ij}) = A_{ij}e^{-\frac{r_{ij}}{\rho_{ij}}} - \frac{C_{ij}}{r_{ij}^{6}}$$
(1)

where r_{ij} is the separation and where classically the parameter A_{ij} and ρ_{ij} are the size and hardness of the ion, respectively.

For the interactions between water molecules and HA surfaces we used the Buckingham potential parameters previously developed by de Leeuw ³, and between HA surfaces and the peptide a 6-12 Lennard Jones potential (eq. 2) from Generalised AMBER ⁴.

$$\Phi_{ij}\left(r_{ij}\right) = \frac{A_{ij}}{r_{ij}^{12}} - \frac{B_{ij}}{r_{ij}^{6}}$$
(2)

where $A_{ij} = \sqrt{\varepsilon_i \varepsilon_j} (R_i + R_j)^{12}$ and $B_{ij} = 2\sqrt{\varepsilon_i \varepsilon_j} (R_i + R_j)^6$. In this function, $(R_i + R_j)$ is the minimum energy distance and $\sqrt{\varepsilon_i \varepsilon_j}$ the depth of the energy well.

Additional parameters used for the modelling of the interaction of the peptide with HA surfaces are report in Table S2.

Van der Waals Parameters		
Atom type	R (Å)	ε (eV/23.0451mol)
Ca ⁵	1.7131	0.4598
Р	2.1000	0.2000
O2_SHL	1.6612	0.2100
O1_SHL	1.7210	0.2104
H1	0.0000	0.0000

Non-bonded parameters have been written in the DL_POLY format and units are *eV*.

vdw 171					
Ca	O2_SHL	buck	1550.0000	0.297	0
Са	O1_SHL	buck	1250.0000	0.3437	0
Са	OW	buck	1186.6000	0.297	0
H1	O2_SHL	buck	312.0000	0.25	0
H1	O1_SHL	buck	312.0000	0.25	0
H1	OW	buck	396.3000	0.25	0
O2_SHL	O2_SHL	buck	16372.0000	0.213	3.47
O2_SHL	OW	buck	22764.0000	0.149	17.14
O1_SHL	O1_SHL	buck	22764.0000	0.149	6.97
O1_SHL	OW	buck	12533.6000	0.213	12.09
O2_SHL	O1_SHL	buck	22764.0000	0.149	4.92
HW	O2_SHL	buck	396.3000	0.23	0
HW	O1_SHL	buck	312.0000	0.25	0
HW	OW	buck	396.3000	0.25	10
0	Са	12-6	29377.4379	39.80538	
0	O2_SHL	12-6	16484.0146	24.51215	
0	O1_SHL	12-6	20438.2927	27.30731	
0	P	12-6	71279.1401	50.35399	
0	0	12-6	16484.0146	24.51215	
0	N	12-6	26328.8120	29.38293	
0	CA	12-6	28108.2489	27.19183	
0	С	12-6	24921.4175	24.1089	
0	На	12-6	1603.0455	3.996825	
0	H	12-6	44.5192	0.666107	
0	OD	12-6	20438.2927	27.30731	
0	CB	12-6	28108.2489	27.19183	
0	CG	12-6	28108.2489	27.19183	
0	CD	12-6	28108.2489	27.19183	
0	Hb	12-6	2661.4139	4.850966	
0	Нд	12-6	2661.4139	4.850966	
0	Hd	12-6	1603.0455	3.996825	
C	Ca	12-6	43856.6457	38.90651	
C	O2_SHL	12-6	24924.7128	24.11209	
C	O1_SHL	12-6	30453.4422	26.66518	
C	P	12-6	97795.1810	47.18252	
С	CA	12-6	40125.7487	25.9898	
C	C	12-6	35581.1140	23.0462	
C	N	12-6	3/321.1162	27.98508	
C	на	12-6	2661.1327	4.080623	
C	H	12-6	98.7530	0.793624	
C	OD	12-6	30453.4422	26.66518	
C	CD	12-6	40125.7487	25.9898	
C	CG	12-6	40125.7487	25.9898	
C O	CB	12-6	40125.7487	25.9898	
	HQ	12-6	2661.1327	4.080623	
	нg	12-6	3738.0169	4.882391	
		12-6	3738.0169	4.882391	
CA	CA	12-6	110300.3499	53.2158	

CA	Ν	12-6	43191.4330	31.97259
CA	Н	12-6	111.3806	0.895105
CA	На	12-6	2945.3995	4.60266
CA	Са	12-6	49464.6394	43.88153
CA	O2 SHL	12-6	28111.8610	27.19533
CA	O1 SHL	12-6	34347.5547	30.07489
CA	P	12-6	110300.3499	53.2158
CA	OD	12-6	34347.5547	30.07489
CA	CD	12-6	45256.6689	29.31314
CA	CG	12-6	45256.6689	29.31314
CA	CB	12-6	45256.6689	29.31314
CA	Hd	12-6	2945.0209	4.602416
CA	На	12-6	154.8153	1.055234
CA	Hb	12-6	154.8153	1.055234
CD	OD	12-6	34347 5547	30 07489
CD	CD	12-6	45256 6689	29 31314
CD	CG	12-6	45256 6689	29 31314
CD	CB	12-6	45256 6689	29 31314
CD	N	12-6	43191 4330	31 97259
CD	На	12-6	2945 0209	4 602416
CD	Hd	12-6	2945 0209	4 602416
CD	На	12-6	154 8153	1 055234
CD	Hh	12-0	154 8153	1.055234
	н	12-0	111 3806	0.805105
	() ()	12-0	10164 6304	43 88153
		12-0	28111 8610	27 10533
		12-0	20111.0010	30 07480
		12-0	110300 3/00	53 2158
CC		12-0	34347 5547	30 07490
CG	CG	12-0	45256 6680	20 21 21 4 09
00		12-0	45250.0009	29.31314
00		12-0	40200.0009	29.31314
CG		12-0	2045 0200	4 602416
CG	на Ца	12-0	2945.0209	4.002410
CG	Ца	12-0	2945.0209	4.002410
CG	ну Ць	12-0	154.0155	1.055234
00		12-0	111 2206	0.805105
00		12-0	10161 6304	43 88153
CG		12-0	29404.0394	43.00133
CG		12-0	20111.0010	27.19555
		12-0	110200 2400	52 2159
		12-0	24247 5547	20 07490
		12-0	34347.3347 45256.6690	20 21214
		12-0	43230.0009	29.31314
CB	N He	12-0	43191.4330	31.97259
	⊓a Lla	12-0	2945.0209	4.002410
	HU	12-0	2945.0209	4.002410
CB	пg	12-0	154.8153	1.055234
CB	HD	12-0	154.8153	1.055234
		12-0	111.3806	0.095105
		12-0	49404.0394	43.00153
		12-0	20111.0010	27.19533
		12-0	34347.5547	50.07489
	Г N	12-0	110300.3499	53.2158
IN	IN	12-0	2905.0809	0.54537

Ν	Ha	12-6	2692.9161	4.913727
Ν	Н	12-6	92.2543	0.909538
Ν	Са	12-6	46525.6539	47.51584
Ν	O2 SHL	12-6	26332.2063	29.38671
Ν	01 SHL	12-6	32326.8122	32.57583
Ν	Р	12-6	106637.0495	58.42035
N	OD	12-6	32326.8122	32,57583
N	Hd	12-6	2692 9161	4 913727
N	На	12-6	3890 8933	5 906419
N	Hb	12-6	3890 8933	5 906419
На	Ca	12-6	2905 0809	6 54537
На		12-0	1603 2515	3 00731
На		12-0	2026 1215	1 40583
		12-0	7957 0420	4.43303
⊓a ⊔a	F He	12-0	216 2245	0.74233
⊓a Lle		12-0	210.3243	0.707742
па	П	12-0	2.5804	0.083857
на	Ha	12-0	216.3245	0.767742
на	нд	12-6	216.3245	0.767742
На	Hb	12-6	216.3245	0.767742
Hd	Hd	12-6	216.3245	0.767742
Hd	Hg	12-6	216.3245	0.767742
Hd	Hb	12-6	216.3245	0.767742
Hd	Н	12-6	2.5804	0.083857
Hd	Са	12-6	2905.0809	6.54537
Hd	O2_SHL	12-6	1603.2515	3.99734
Hd	O1_SHL	12-6	2026.1215	4.49583
Hd	Р	12-6	7857.9429	8.74233
Hg	Hg	12-6	216.3245	0.767742
Hg	Hb	12-6	216.3245	0.767742
Hg	Н	12-6	2.5804	0.083857
Hg	Са	12-6	2905.0809	6.54537
Hg	O2 SHL	12-6	1603.2515	3.99734
Hg	01 SHL	12-6	2026.1215	4.49583
Ha	Р	12-6	7857.9429	8.74233
Hb	Са	12-6	4252,1873	7.91883
Hb	O2 SHL	12-6	2361,7174	4.85159
Hb	01 SHI	12-6	2962 8229	5 43663
Hb	P	12-6	11032 1973	10 35866
Hb	Hb	12-6	216 3245	0 767742
Hh	Н	12-6	2 5804	0.083857
		12-6	25246 2457	30 36418
	ц	12-6	60 9530	0 77978
	() ()	12-0	36305 9733	14 27213
		12-0	20202.97.22	27 20721
		12-0	20430.2927	27.30731
		12-0	20240.2407	50.30410
	P Co	12-0	80215.0323	55.40523
		12-0	80.4934	1.1294
н	02_SHL	12-6	44.5193	
н	U1_SHL	12-6	60.9530	0.77978
Н	Р	12-6	364.9645	1.88407
H	Н	12-6	0.0061	0.00407
OW	0	12-6	77698.6918	95.51224
OW	С	12-6	30212.8448	24.47688
OW	CA	12-6	34076.1904	27.60676

Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry 2009

$\cap M$	NI	126	22100 0421	20.05710
000	IN	12-0	32100.9421	29.90719
OW	CB	12-6	34076.1904	27.60676
OW	CG	12-6	34076.1904	27.60676
OW	CD	12-6	34076.1904	27.60676
OW	На	12-6	2062.7605	4.180564
OW	Hb	12-6	2999.5295	5.041237
OW	Hd	12-6	2062.7605	4.180564
OW	Hg	12-6	2062.7605	4.180564
OW	OW	12-6	25232.7276	25.79161
OW	Н	12-6	65.9480	0.3138999
OW	OD	12-6	25257.6900	27.98941
Р	OW	12-6	84937.4546	50.70005
close				

- 1. G. W. Watson, E. T. Kelsey, N. H. deLeeuw, D. J. Harris and S. C. Parker, *J Chem Soc Faraday T*, 1996, **92**, 433-438.
- 2. A. Wierzbicki and H. S. Cheung, *J Mol Struc-Theochem*, 2000, **529**, 73-82.
- 3. N. H. de Leeuw, *Phys Chem Chem Phys*, 2004, **6**, 1860-1866.
- 4. W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell and P. A. Kollman, *Journal of the American Chemical Society*, 1995, **117**, 5179-5197.
- 5. J. Robinson, I. Cukrowski and H. M. Marques, *Journal of Molecular Structure*, 2006, **825**, 134-142.