Supplementary Information Molecular association in low-temperature and highpressure polymorphs of 1,1,1,2-tetrachloroethane

Maciej Bujak^a and Andrzej Katrusiak^b

^aFaculty of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland; ^bFaculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland

*Corresponding author: katran@amu.edu.pl

	-				
temperature, K	100.0(1)	195.0(1)	295(2)	295(2)	295(2)
pressure	0.1 MPa	0.1 MPa	1.05(5) GPa	1.65(5) GPa	2.55(5) GPa
formula	$C_2H_2Cl_4$	$C_2H_2Cl_4$	$C_2H_2Cl_4$	$C_2H_2Cl_4$	$C_2H_2Cl_4$
fw, g/mol	167.84	167.84	167.84	167.84	167.84
crystal size, mm ³	0.30 x 0.20 x 0.20	0.30 x 0.20 x 0.20	0.44 x 0.43 x 0.25	0.44 x 0.44 x 0.25	0.43 x 0.43 x 0.25
crystal system	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic
space group, Z	<i>C</i> 2/ <i>c</i> , 8	<i>C</i> 2/ <i>c</i> , 8	$P2_{1}/c, 4$	$P2_1/c, 4$	$P2_{1}/c, 4$
a, Å	22.1891(15)	22.2760(8)	5.7549(14)	5.6957(14)	5.5937(14)
b, Å	5.4975(2)	5.59764(17)	11.979(7)	11.850(7)	11.586(6)
<i>c</i> , Å	10.2493(6)	10.3599(4)	8.734(5)	8.610(5)	8.336(5)
<i>β</i> , °	110.055(7)	109.912(4)	110.32(4)	110.35(4)	110.60(4)
<i>V</i> , Å ³	1174.45(11)	1214.58(7)	564.6(5)	544.9(5)	505.7(4)
ho, g/cm ³	1.898	1.836	1.974	2.046	2.204
μ , mm ⁻¹	1.864	1.802	1.938	2.009	2.164
θ range, °	3.83 - 25.00	3.77 - 25.00	3.01 - 24.96	3.05 - 25.00	3.15 - 24.90
index ranges	$-26 \le h \le 26$	$-26 \leq h \leq 26$	$-6 \le h \le 6$	$-6 \le h \le 6$	$-6 \le h \le 6$
	$-4 \le k \le 6$	$-4 \le k \le 6$	$-11 \leq k \leq 11$	$-11 \leq k \leq 11$	$-11 \le k \le 11$
	$-12 \le l \le 12$	$-12 \le l \le 12$	$-8 \leq l \leq 8$	$-8 \leq l \leq 8$	$-8 \leq l \leq 8$
reflns collected	4398	4591	3635	3565	3193
R _{int}	0.0172	0.0200	0.2175	0.1536	0.2712
data $[I > 2\sigma(I)]$	944	927	488	478	404
data/parameters	1034/75	1076/75	515/55	500/55	443/55
GOF on F^2	1.084	1.104	1.155	1.180	1.154
$R_I [I > 2\sigma(I)]$	0.0261	0.0383	0.0861	0.0691	0.0901
R_1 (all data) ^{<i>a</i>}	0.0294	0.0441	0.1269	0.0713	0.0973
wR_2 (all data) ^{<i>a</i>}	0.0543	0.0940	0.2024	0.1729	0.2365
lrgst diff peak, e/Å 3	0.616	0.578	0.471	0.434	0.746
lrgst diff hole, e/Å 3	-0.592	-0.362	-0.423	-0.428	-0.541

Table S1 The 1112TCE crystal data and structure determination summary

 ${}^{a}R_{I} = \mathcal{I}[|F_{o}| - |F_{c}|]/\mathcal{I}[F_{o}]; wR_{2} = \{\mathcal{I}[w(F_{o}^{2} - F_{c}^{2})^{2}]/\mathcal{I}[w(F_{o}^{2})^{2}]\}^{1/2}; w = 1/[\sigma^{2}(F_{o}^{2}) + (aP)^{2} + bP], \text{ where } P = (F_{o}^{2} + 2F_{c}^{2})/3$

Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry 2010 **Table S2a** Molecular dimensions (Å, °) for 1112TCE

Atoms; Pressure/Temperature (K)		0.1 MPa/100.0(1)	0.1 MPa/195.0(1)	1.05(5) GPa/295(2)	1.65(5) GPa/295(2)	2.55(5) GPa/295(2)
C11-Cl1/C12-Cl4	C1–Cl1	1.787(6)/1.884(18)	1.797(11)/1.90(3)	1.774(10)	1.779(8)	1.739(11)
C11-Cl2/C12-Cl3	C1–Cl2	1.775(4)/1.796(11)	1.776(7)/1.787(16)	1.780(8)	1.777(7)	1.764(9)
C11-Cl3/C12-Cl2	C1–Cl3	1.788(4)/1.849(10)	1.788(7)/1.830(15)	1.749(9)	1.759(7)	1.770(10)
C11-C21/C12-C22	C1–C2	1.527(9)/1.42(3)	1.519(16)/1.45(4)	1.527(13)	1.510(10)	1.537(15)
C21-Cl4/C22-Cl1	C2–Cl4	1.753(6)/1.768(18)	1.747(11)/1.74(3)	1.778(10)	1.766(8)	1.741(11)
C11-C21-Cl4/C12-C22-Cl1	C1C2C14	110.4(4)/108.4(11)	110.2(7)/108.0(17)	111.5(7)	111.9(5)	113.4(8)
C21-C11-C11/C22-C12-C14	C2C1Cl1	106.0(3)/103.8(10)	105.8(6)/103.7(15)	106.3(6)	106.9(5)	108.5(8)
C21-C11-Cl2/C22-C12-Cl3	C2C1Cl2	109.0(4)/108.1(12)	108.8(7)/108.5(18)	110.5(6)	110.5(4)	109.5(6)
C21-C11-Cl3/C22-C12-Cl2	C2C1Cl3	108.8(4)/105.2(11)	109.2(7)/105.7(17)	111.2(6)	111.8(5)	109.7(7)
Cl1-Cl1-Cl2/Cl4-Cl2-Cl3	Cl1-C1-Cl2	113.2(3)/118.1(8)	113.4(5)/117.5(12)	109.4(5)	109.0(4)	110.6(5)
Cl1-Cl1-Cl3/Cl4-Cl2-Cl2	Cl1-C1-Cl3	112.0(3)/116.5(8)	112.0(5)/115.6(12)	109.2(4)	108.3(3)	108.9(4)
Cl2-C11-Cl3/Cl3-C12-Cl2	Cl2ClCl3	107.7(2)/104.2(6)	107.5(4)/105.2(9)	110.2(5)	110.1(4)	109.6(6)
Cl1-C11-C21-Cl4/Cl4-C12-C22-Cl1	Cl1-C1-C2-Cl4	-178.4(2)/179.9(5)	-178.5(3)/179.8(7)	-175.8(4)	-174.6(3)	-173.4(5)
Cl2-C11-C21-Cl4/Cl3-C12-C22-Cl1	Cl2ClC2Cl4	59.4(4)/53.6(10)	59.2(7)/54.1(15)	65.6(7)	66.8(5)	65.7(8)
Cl3-Cl1-Cl4/Cl2-Cl2-Cl2-Cl1	Cl3-C1-C2-Cl4	-57.8(4)/-57.3(9)	-57.8(7)/-58.3(14)	-57.0(8)	-56.2(6)	-54.6(8)

Supplementary Material (ESI) for CrystEngComm

This journal is © The Royal Society of Chemistry 2010

Fable S2b	The shortest	intermolecular	distances and	angles (Å	, °) for 1112TCE
-----------	--------------	----------------	---------------	-----------	------------------

0.1 MPa/195.0(1) 1.65(5) GPa/295(2) 2.55(5) GPa/295(2) Atoms: Pressure/Temperature (K) 0.1 MPa/100.0(1) 1.05(5) GPa/295(2) Cl1···Cl2^{IV} 3.481(4) 3.408(3) 3.271(4) _ $C1-Cl1\cdots Cl2^{IV}$ 129.6(3) 129.7(2) 129.8(3) Cl1...Cl2^{IV}–C1^{IV} 164.0(3) 163.5(3) 161.9(4) $C1-C11\cdots C12^{IV}-C1^{IV}$ -68(1)-71.0(8)-73(1)_ Cl1···Cl3^V 3.445(4) 3.383(3) 3.262(4) _ C1–Cl1···Cl3^V 158.8(3) 158.2(2) 156.5(3) $C11 \cdots C13^{v} - C1^{v}$ 131.6(3) 130.6(3) 130.8(4) $C1-C11\cdots C13^{V}-C1^{V}$ -103.0(8)-105.4(6)-106.4(7)_ Cl1…Cl4^{VI} 3.436(3) _ C1–Cl1····Cl4^{VI} 98.6(3) $Cl1\cdots Cl4^{VI}-C2^{VI}$ 143.5(3) $C1-C11\cdots C14^{VI}-C2^{VI}$ -164.7(8)_ Cl2…Cl4^{VII} 3.405(5) _ _ C1–Cl2···Cl4^{VII} 128.6(4) $C12\cdots C14^{VII}-C2^{VII}$ 118.7(5) $C1-Cl2\cdots Cl4^{VII}-C2^{VII}$ 83.5(6) Cl3····Cl3^{VIII} 3.404(6) _ _ C1-Cl3···Cl3^{VIII} 130.5(4) CI3···CI3^{VIII}–C1^{VIII} 130.5(4) C1-Cl3···Cl3^{VIII}-180.00 Cl3···Cl4^I Cl3···Cl4^{IX} 3.424(1) 3.484(2)3.490(3) 3.413(3) C11–Cl3···Cl4^I/C12–Cl3···Cl4^I C1–Cl3····Cl4^{IX} 160.8(2)/160.9(6) 161.3(4)/161.2(8) 144.2(3)144.6(4) $Cl3\cdots Cl4^{IX}-C2^{IX}$ Cl3···Cl4^I–C21^I/Cl3···Cl4^I–C22^I 88.0(2) 125.0(2)/-125.2(2)/-86.6(3) C11-Cl3···Cl4^I-C21^I C1–Cl3···Cl4^{IX}–C2^{IX} 5.2(6) 4(1)-57.6(5)-56.5(8)C12-Cl3···Cl4^I-C22^I _ C11-Cl3···Cl4^I-C22^I _ $C12-C13\cdots C14^{I}-C21^{I}$ 98(1) 96(2) _ _ Cl4…Cl4^{II} 3.428(2) 3.474(3) _ _ $C21-Cl4\cdots Cl4^{II}/C22-Cl4\cdots Cl4^{II}$ 144.6(2)/-143.9(3)/-Cl4...Cl4^{II}–C21^{II}/Cl4...Cl4^{II}–C22^{II} 144.6(2)/-143.9(3)/-C21–Cl4···Cl4^{II}–C21^{II} -35.3(5)-35.8(8)C22-Cl4...Cl4^{II}-C22^{II} _

Supplementary Material (ESI) for Cryst This journal is © The Royal Society of 0	EngComm Chemistry 2010					
$C21-Cl4\cdots Cl4^{I}-C22^{II}$	-	-	-	-	-	-
C22-Cl4···Cl4 ^{II} -C21 ^{II}	-	-	-	-	-	-
	$Cl4\cdots C2^{X}$	-	-	-	-	3.412(11) (Table S3)
	$C2-Cl4\cdots C2^X$	-	-	-	-	100.3(4)
	$Cl4\cdots C2^{X}-C1^{X}$	-	-	-	-	154.7(7)
	$Cl4\cdots C2^{X}$ – $Cl4^{X}$	-	-	-	-	79.7(4)
	$C2-Cl4\cdots C2^{X}-C1^{X}$	-	-	-	-	-124(2)
	$C2-Cl4\cdots C2^{X}-Cl4^{X}$	-	-	-	-	0.00
	Cl2···H21 ^{XI}	-	-	-	2.94	2.85
	C1–Cl2···H21 ^{XI}	-	-	-	105.2	103.8
	$Cl2 \cdots H21^{XI} - C2^{XI}$	-	-	-	144.1	142.5
	$C1-Cl2\cdots H21^{XI}-C2^{XI}$	-	-	-	32.1	37.1
	Cl4···H21 ^X	-	-	-	-	2.82 (Table S3)
	C2–Cl4···H21 ^X	-	-	-	-	109.2
	$Cl4$ ···H21 ^X – $C2^X$	-	-	-	-	119.9
	$C2-Cl4\cdots H21^{X}-C2^{X}$	-	-	-	-	53.5
Cl4···H212 ^{III}	Cl4···H22 ^{XII}	2.83 (Table S3)	2.87	2.87	2.84	2.74 (Table S3)
C21–Cl4···H212 ^{III} /C22–Cl4···H212 ^{III}	C2–Cl4···H22 ^{XII}	107.7/-	106.2/-	79.1	79.3	77.9
$C14 \cdots H212^{III} - C21^{III} / C14 \cdots H212^{III} - C22^{III}$	Cl4···H22 ^{XII} – $C2$ ^{XII}	142.5/-	144.0/-	154.7	153.0	150.9
C21-Cl4···H212 ^{III} -C21 ^{III}	$C2-Cl4\cdots H22^{XII}-C2^{XII}$	6.5	5.0	67.5	68.5	72.7
C22-Cl4···H212 ^{III} -C22 ^{III}	-	-	-	-	-	-
$C21-Cl4\cdots H212^{III}-C22^{III}$	-	-	-	-	-	-
$C22-Cl4\cdots H212^{III}-C21^{III}$	-	-	_	-	-	_

Symmetry codes: (I) x, 1 - y, -1/2 + z; (II) 1 - x, y, 3/2 - z; (III) 1 - x, -y, 1 - z; (IV) 1 + x, 3/2 - y, 1/2 + z; (V) 1 - x, 1/2 + y, 1/2 - z; (VI) -x, 1/2 + y, 1/2 - z; (VII) -x, 1 - y, -z; (VIII) 1 - x, 1 - y, -z; (VIII) 1 - x, 1 - y, -z; (VII) -x, -z; (VII) -x; (V

Table S3 Hydrogen bonds (Å, °) for 1112TCE

Atoms	D–H	Н…А	D····A	D–H…A
	(0.1 MPa/100.0(1)	K	
C21–H212…Cl4 ^I	0.97	2.83	3.647(5)	142.5
	2	.55(5) GPa/295(2	2) K	
C2–H21···Cl4 ^{II}	0.97	2.82	3.412(11)	119.9
C2–H22····Cl4 ^{III}	0.97	2.74	3.620(10)	150.9

Symmetry codes: (I) 1 - x, -y, 1 - z; (II) -x, 1 - y, 1 - z; (III) 1 - x, 1 - y, 1 - z.