Supplementary information

Title: Self-assembled coordination polymers of V-shaped bis(pyridyl)thiadiazole dependent upon

the spacer length and flexibility of aliphatic dicarboxylate ligands

Authors: Gui-Lin Wen, Yao-Yu Wang,* Wei-Hong Zhang, Chen Ren, Rui-Ting Liu and Qi-Zhen

Shi

Table S1.	Selected	bond	angles	(°) of	complexes	1–6 ^[a]
-----------	----------	------	--------	--------	-----------	---------------------------

1				2			
O3–Cu1–O1	174.6(2)	O3–Cu1–O4#2	77.0 (2)	O1–Cu2–O5	93.25(9)	O4–Cu1–O2	88.52(9)
O3-Cu1-O2#1	91.0(2)	O1–Cu1–O4#2	100.5(2)	O4–Cu1–N2	92.6 (1)	O1-Cu2-N1#3	91.4 (1)
O1–Cu1–O2#1	83.9(2)	O2#1-Cu1-O4#2	85.7(2)	N1#3-Cu2-O5	85.3 (1)	N2-Cu1-O2	90.1(1)
O3–Cu1–N2	95.3(2)	N2-Cu1-O4#2	103.3(2)				
O1–Cu1–N2	90.0(2)	O3–Cu1–O4#3	92.1(2)				
O2#1-Cu1-N2	169.9(2)	O1–Cu1–O4#3	89.8(2)				
O2#1-Cu1-O4#3	88.2(2)	O4#2-Cu1-O4#3	167.5(2)				
N2-Cu1-O4#3	83.7(2)						
3				4			
O1–Cu1–N1	100.4(3)	O2#2-Cu1-O1	168.5(3)	O1–Cu1–O3	176.5 (2)	O1-Cu1-N2#1	86.9 (2)
O4#1-Cu1-O2#2	90.1(3)	O3#3-Cu1-O1	90.6(3)	O1–Cu1–N1	89.6 (2)	O3-Cu1-N2#1	91.5(2)
O4#1-Cu1-O3#3	168.8(3)	O3#3-Cu1-N1	100.7(3)	O3–Cu1–N1	91.8(2)	N1-Cu1-N2#1	175.3 (2)
O2#2-Cu1-O3#3	87.3(3)	O2#2-Cu1-N1	91.1(3)				
O4#1-Cu1-O1	89.7(3)						
5				6			
O1-Cu1-O3#1	146.6(2)	N1-Cu1-N4#2	169.0(2)	O4#1-Cd1-O1	89.4(3)	O3Cd1O5	92.0(4)
O1–Cu1–N1	92.8(2)	O1–Cu1–O2#3	125.0(2)	O4#1-Cd1-O3	170.2(3)	O2#2Cd1O5	93.4(4)
O3#1-Cu1-N1	88.3 (2)	O3#1-Cu1-O2#3	88.4 (2)	O1–Cd1–O3	81.4 (2)	O4#1-Cd1-N1	83.6(2)
O1-Cu1-N4#2	92.7(2)	N1-Cu1-O2#3	84.6(2)	O4#1-Cd1-O2#2	100.0 (2)	O1-Cd1-N1	84.0(3)
O3#1-Cu1-N4#2	92.4 (2)	N4#2-Cu1-O2#3	84.4(2)	O1–Cd1–O2#2	170.1(3)	O3-Cd1-N1	91.9(2)
				O3–Cd1–O2#2	88.9(3)	O2#2-Cd1-N1	94.3(2)
				O4#1-Cd1-O5	91.4(4)	O5-Cd1-N1	171.5(4)
				O1–Cd1–O5	89.1(4)		
539	1 4						

[a] Symmetry codes: 1: #1 -x+1/2, -y+3/2, -z; #2 -x+1/2, -y+1/2, -z; #3 -x+1/2, y+1/2, -z+1/2. 2: #3 x, y+1, z+1. 3: #1 x, -y+1/2, z-1/2; #2 -x+2, -y+1, -z+1; #3 -x+2, y+1/2, -z+3/2. 4: #1 x, y-1, z-1. 5: #1 x-1/2, y, -z+1; #2 x, y+1, z; #3 -x+1, y, -z+1/2. 6: #1 -x+3/2, y-1/2, z-1/2; #2 -x+3/2, y-1/2, z+1/2.

1 able S2. Selected bond angles () of complexes $7-10^{10}$	Table S2.	Selected	bond	angles	(°) of	com	olexes	7-10 ^[a]
--	-----------	----------	------	--------	--------	-----	--------	---------------------

7				8			
O4#1-Cd1-O2	165.00(5)	O2Cd1N1	87.95(5)	N1-Cd1-N4#1	170.1(2)	N4#1-Cd1-O2	90.3(2)
O4#1-Cd1-O4#2	71.62(6)	O4#2-Cd1-N1	93.81(6)	N1-Cd1-O1	91.6(2)	O1Cd1O2	53.8(2)
O2-Cd1-O4#2	93.50(5)	O1-Cd1-N1	94.53(5)	N4#1-Cd1-O1	93.4(2)	O4#2-Cd1-O2	88.4(2)
O4#1-Cd1-O1	139.10(5)	N2#3-Cd1-N1	179.08(5)	N1-Cd1-O4#2	84.5(2)	O3#3-Cd1-O2	144.6(2)
O2Cd1O1	55.86(5)	O4#1-Cd1-O3#1	52.32(5)	N4#1-Cd1-O4#2	86.3(2)	N1-Cd1-O4#3	87.6(2)
O4#2-Cd1-O1	147.82(5)	O2-Cd1-O3#1	142.48(5)	O1-Cd1-O4#2	142.2(2)	N4#1-Cd1-O4#3	93.5(2)
O4#1-Cd1-N2#3	88.95(5)	O4#2-Cd1-O3#1	123.93(5)	N1-Cd1-O3#3	94.3(2)	O1-Cd1-O4#3	142.9(2)
O2-Cd1-N2#3	91.77(5)	O1-Cd1-O3#1	87.51(5)	N4#1-Cd1-O3#3	94.1(3)	O4#2-Cd1-O4#3	74.6(2)
O4#2-Cd1-N2#3	85.33(5)	N2#3-Cd1-O3#1	93.60(5)	O1-Cd1-O3#3	90.9(2)	O3#3-Cd1-O4#3	52.3(2)
O1-Cd1-N2#3	86.03(5)	N1-Cd1-O3#1	87.16(5)	O4#2-Cd1-O3#3	126.9(2)	O2-Cd1-O4#3	162.3(2)
O4#1-Cd1-N1	91.09(5)			N1-Cd1-O2	85.8(2)		
9				10			
O7–Cd1–O1	<mark>113.5(2)</mark>	N1-Cd2-N4#4	<mark>172.2(2)</mark>	N1Cd1O3	85.7(2)	O3Cd1O1	152.5(2)
O7-Cd1-O4#1	<mark>148.3(2)</mark>	O7-Cd1-N3#2	82.3(3)	N1Cd1O2	128.5(2)	O2Cd1O1	54.0(2)
O1-Cd1-O4#1	<mark>89.7(2)</mark>	O1-Cd1-N3#2	<mark>80.9(3)</mark>	O3–Cd1–O2	145.8(2)	O5Cd1O1	79.4(2)
O7-Cd1-N2	<mark>97.2(2)</mark>	O4#1-Cd1-N3#2	<mark>80.0(6)</mark>	N1Cd1O5	102.8(2)	O4#1-Cd1-O1	103.0(2)
O1-Cd1-N2	<mark>93.0(2)</mark>	N2-Cd1-N3#2	<mark>173.0(2)</mark>	O3–Cd1–O5	82.1(2)	N1-Cd1-O4	131.6(2)
O4#1-Cd1-N2	103.1(2)	O5-Cd1-N3#2	<mark>96.9(3)</mark>	O2Cd1O5	88.8(2)	O3Cd1O4	53.9(2)
O7–Cd1–O5	<mark>79.5(2)</mark>	O4-Cd2-N4#4	<mark>98.7(2)</mark>	N1-Cd1-O4#1	87.0(2)	O2Cd1O4	95.1(2)
O1–Cd1–O5	<mark>166.2(2)</mark>	O2-Cd2-N1	<mark>102.2(2)</mark>	O3-Cd1-O4#1	98.7 (2)	O5Cd1O4	97.2(2)
O4#1-Cd1-O5	<mark>76.5(2)</mark>	O2-Cd2-O5#3	<mark>146.0(2)</mark>	O2-Cd1-O4#1	85.2(2)	O4#1-Cd1-O4	75.8(2)
N2Cd1O5	<mark>89.9(2)</mark>	N1-Cd2-O5#3	<mark>98.3(2)</mark>	O5-Cd1-O4#1	170.3(2)	O1Cd1O4	148.8(2)
O5#3-Cd2-N4#4	<mark>79.7(2)</mark>	O2Cd2O8	<mark>119.1(2)</mark>	N1Cd1O1	78.8(2)		
O8-Cd2-N4#4	<mark>81.3(3)</mark>	N1-Cd2-O8	<mark>92.1(2)</mark>				
O8Cd2O4	<mark>162.6(2)</mark>	O5#3-Cd2-O8	<mark>86.7(2)</mark>				
O2-Cd2-N4#4	<mark>83.2(2)</mark>	O2Cd2O4	<mark>77.8(2)</mark>				
O5#3-Cd2-O4	76.1(2)	N1-Cd2-O4	<mark>88.0(2)</mark>				

[a] Symmetry codes: 7: #1 -x+1, y-1/2, -z+1/2; #2 x, -y+3/2, z-1/2; #3 x+1, y+1, z. 8: #1 x, y-1, z-1; #2 -x+1, -y, -z; #3 x-1, y, z. 9: #1 x, y-1, z; #2 x-1/2, -y+1/2, z; #3 x, y+1, z; #4 x+1/2, -y+3/2, z. 10: #1 -x+1, -y, -z+1.

Complex	D–H···A (Å)	D-H (Å)	H···A (Å)	D…A (Å)	<dha(°)< th=""></dha(°)<>
1	O11–H11A…O2#6	0.80	1.98	2.774(7)	173
	O11-H11B…O13#7	0.80	2.00	2.899(4)	147
	O12–H12B…O2#6	0.80	2.11	2.905(6)	173
	O13–H13B…O11#8	0.80	2.27	2.839(5)	129
2	O7–H7WA…N4#6	0.83	2.16	2.951(4)	159
	O7–H7WB…O6	0.83	1.99	2.796(4)	164
	O6–H6WB…O3#7	0.83	2.06	2.873(4)	168
	O6–H6WA…O3#8	0.83	2.02	2.855(4)	175
	O5–H5WB…O7	0.82	2.26	3.077(4)	176
	O5–H5WA…O2	0.83	2.09	2.742(3)	136
5	O6–H6B…O4#8	0.80	2.01	2.810(6)	178
	O6–H6A…N3#7	0.80	2.23	3.031(6)	179
	O5–H5WB…O6#6	0.83	2.06	2.773(8)	144
	O5–H5WA…O6	0.84	1.92	2.711(9)	156

Table S3. Possible hydrogen bond geometries for complexes 1, 2 and $5^{[a]}$

[a] Symmetry codes: 1: #6 x, -y+2, z+1/2; #7 x, y+1, z; #8 x, -y+1, z-1/2. 2: #6 x, y+1, z; #7 -x+1, -y+1, -z+1; #8 x, y, z-1. 5: #6 -x+3/2, -y+1, z; #7 -x+1, -y+1, -z+1; #8. -x+3/2, y-1, z+1/2

Complex	Metal ion	Coordination number	Anion	$C \cdots C^a / Å$	Coordination net	Interpenetration
1	Cu	6	OX	1.524	3D	none
2	Cu	6	mal	2.566	2D→H-bonding 3D	2-fold
3	Cu	5	glu	4.352	2D	none
4	Cu	5+2	adi	5.420	3D	2-fold
5	Cu	5	fum	3.884	3D	2-fold
6	Cd	6	mal	2.531	2D	none
7	Cd	7	suc	3.184	3D	polyknotting
8	Cd	7	glu	4.153	2D double layers	none
9	Cd	6+1	male	<mark>3.124</mark>	2D	none
10	Cd	7	fum	3.874	2D	none

Table S4. A comparison of the structural features for complexes 1–10

^{*a*} The distance between two terminal backbone C-donors of aliphatic dicarboxylates.

Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry 2009

Fig. S1. TG graphs of complexes 1 (solid line) and 5(dash line).

Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry 2009

Fig. S2. Comparison of XRPD patterns of the simulated pattern from the single-crystal structure determination and the as-synthesized phases in complex 6 (a), complex 7 (b), complex 8 (c), complex 9 (d), and complex 10 (e).