Supporting Information:

- 1. Liquid state ¹H NMR Spectra in MeOD for (a) AnHNO₃-II (b) AnHNO₃-I 2. Solid state NMR- ¹³C CP MAS for (a) AnHNO₃-II (b) AnHNO₃-I
- 3. Powder X-ray diffraction data for different crystals of AnHNO₃.
- 4. FT-IR spectra of AnHNO₃-I and II
- 5. Powder X-ray diffraction data for AnHNO₃-I, after heating at 110 °C
- 6. DSC thermogram- AnHNO₃-I: repeated heating and cooling cycles.
- 7. SEM images of AnHNO₃-I showing pores on the surface.
- Powder X-ray pattern for amorphous Alumina.
 Solid state ²⁷Al NMR on Alumina

Figure 1. Liquid state ¹H NMR Spectra in MeOD for (a) AnHNO₃-II (b) AnHNO₃-I

(b)

Figure 1. Liquid state ¹H NMR Spectra in MeOD for (a) AnHNO₃-II (b) AnHNO₃-I

Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry 2010

Figure 2. Solid state NMR-¹³C CP MAS for (a) AnHNO₃-II (b) AnHNO₃-I

Figure 3: Powder X-ray diffraction data for different crystals of AnHNO₃.

6/10

Figure 5. Powder X-ray diffraction data for AnHNO₃-I, after re-heating at 110 °C

Figure 6: DSC thermogram- AnHNO₃-I: repeated heating and cooling cycles. 1a,1b,1c shows repeat cycles.

Figure 7. SEM images of AnHNO₃-I showing pores on the surface of the tubes.

Figure 8: Powder X-ray pattern on amorphous Alumina.

Figure 9: ²⁷Al NMR spectra recorded at MAS frequency of 10kHz.