Electronic Supplementary Information

## Sulfate encapsulation in three-fold interpenetrated metal-organic frameworks with bis(pyridylurea) ligands

Biao Wu,\* Jianjun Liang, Yuxin Zhao, Minrui Li, Shaoguang Li, Yanyan Liu, Yongping Zhang, and Xiao-Juan Yang

## Experimental



Figure S1. TGA curve of compound 1.



*Figure S2.* TGA curve of compound 2.

*Figure S3.* TGA curve of compound **3**.

Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry 2010



*Figure S4.* <sup>1</sup>H NMR spectrum of  $L^5$ .



*Figure S5.* <sup>1</sup>H NMR spectrum of **1**.



*Figure S6.* <sup>1</sup>H NMR Spectrum of **2**.

Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry 2010



*Figure S7.* <sup>1</sup>H NMR spectrum of **3**.



Figure S8. Molecular plot of 1 with atomic labeling. Hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (°): Zn–N1, 2.216(1); Zn–N6B,<sup>b</sup> 2.176(1); Zn–O7, 2.127(1); O7–Zn–N1, 88.23(5); N1–Zn–N1A<sup>a</sup>, 84.14(8); N6B<sup>b</sup>–Zn–N6C<sup>c</sup>, 85.56(7); N6C<sup>c</sup>–Zn–N1 95.16(6); O7–Zn–N1A<sup>a</sup>
92.26(5); N6B<sup>b</sup>–Zn–N1 178.64(5); O7–Zn–N6B<sup>b</sup>, 90.63(5); O7–Zn–N6C<sup>c</sup>, 88.89(5). Symmetry code: <sup>a</sup> 1–x, y, 0.5–z, <sup>b</sup> 1.5+x, 0.5+y, 0.5–z; <sup>c</sup> –x–0.5, y+0.5, z.



*Figure S9.* (a) Ellipsoidal cavities in the 3-fold interpenetrated structure of **1** with sulfate ions encapsulated in the cavities; (b) Side view of the interpenetrated bilayer structure of **1**.



Figure S10. The layered structure of 1 packed in a repeating ABAB sequence.



*Figure S11.* Ellipsoidal cavities in the 3-fold interpenetrated structure of **3**. The ligands are color coded to show that each belongs to a different independent network. Symmetry code of sulfate: 1–x, y, 0.5–z,

| D–H···A                       | Н…А  | D····A   | ∠D–H…A |
|-------------------------------|------|----------|--------|
| N2-H2B…O3                     | 2.11 | 2.916(2) | 156.8  |
| N3-H3B…O3                     | 2.15 | 2.941(3) | 153.6  |
| N4–H4A…O6 <sup><i>a</i></sup> | 2.14 | 2.906(7) | 148.2  |
| N4–H4A…O4                     | 2.17 | 3.002(7) | 164.2  |
| N5-H5B…O5                     | 2.12 | 2.869(4) | 145.4  |
| N5-H5B····O4 <sup>a</sup>     | 2.14 | 2.962(5) | 159.7  |
| N2-H2B…O5                     | 2.56 | 3.221(4) | 134.3  |

**Table S1.** Hydrogen bonding parameters (Å, °) for  $SO_4^{2-}$  binding by the urea groups in **1**.

<sup>*a*</sup> symmetry code: x–0.5, y–0.5, 0.5–z.

Table S2. Hydrogen bonding parameters (Å, °) in 2.

| D–H…A     | Н…А     | D…A      | ∠D−H…A |
|-----------|---------|----------|--------|
| O7–H7D…O8 | 1.82(3) | 2.651(3) | 175(4) |
| O7-H7C…O2 | 1.94(3) | 2.741(3) | 169(4) |
| O8-H8D…O1 | 1.87(3) | 2.760(3) | 174(4) |

| This journal is The Royal Society of Chemistry 2010 |         |           |        |  |  |  |
|-----------------------------------------------------|---------|-----------|--------|--|--|--|
| O8-H8C…O4                                           | 1.97(3) | 2.884(10) | 163(4) |  |  |  |
| O8-H8C…O6                                           | 1.80(3) | 2.734(12) | 175(4) |  |  |  |
| N2-H2B…O3                                           | 2.09    | 2.908(3)  | 157.9  |  |  |  |
| N3-H3B…O3                                           | 2.19    | 2.977(3)  | 152.3  |  |  |  |
| N4–H4A…O4                                           | 2.19    | 3.036(10) | 168.0  |  |  |  |
| N4-H4A…O6                                           | 2.11    | 2.890(11) | 150.8  |  |  |  |
| N5-H5B…O5                                           | 2.10    | 2.872(5)  | 148.3  |  |  |  |

Supplementary Material (ESI) for CrystEngComm

| D–H…A        | Н…А     | D····A    | ∠D−H…A |
|--------------|---------|-----------|--------|
| 01-H1C…07    | 1.81(2) | 2.646(4)  | 174.6  |
| O7-H701···O5 | 2.11(5) | 2.926(7)  | 161.4  |
| O7-H701…O5A  | 1.89(4) | 2.733(12) | 173.4  |
| N2-H2…O4     | 2.31    | 3.071(4)  | 147.7  |
| N2-H2…O6     | 2.32    | 3.114(7)  | 153.8  |
| N3-H3…O4     | 2.11    | 2.905(5)  | 153.2  |
| N4-H4…O5     | 2.08    | 2.929(7)  | 170.2  |
| N4-H4…O5A    | 2.06    | 2.893(12) | 162.9  |
| N5-H5…O5     | 2.34    | 3.084(8)  | 144.7  |
| N5-H5…O6     | 2.10    | 2.937(7)  | 163.5  |

Table S3. Hydrogen bonding parameters (Å, °) in 3.

## Anion competitive crystallization experiments

A solution of 68.4 mg (0.2 mmol) of L in 10 mL of MeOH was added to an aqueous solution (5 mL) containing  $ZnSO_4$  (0.1 mmol), NaCl (0.2 mmol), NaNO<sub>3</sub> (0.2 mmol), and NaClO<sub>4</sub> (0.2 mmol). The resulting solution was stirred at room temperature and allowed to evaporate slowly. After one week, colorless crystals were collected and washed with water, ethanol and ether. The FT-IR spectrum and powder X-ray diffraction pattern of the product were identical with those of **1**.



Figure S12. FT-IR spectra of 1 (black) and the solid crystallized in the presence of the anionic mixture (red).

Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry 2010







Figure S14. FT-IR spectrum of 3.