Supplementary Information

Metal-organic frameworks with pyridyl- and carboxylate-containing ligand: syntheses, structures and properties

Man-Sheng Chen,^{*a,b*} Zheng-Shuai Bai,^{*a*} Taka-aki Okamura,^{*c*} Zhi Su,^{*a*} Shui-Sheng Chen,^{*a*} Wei-Yin Sun^{**a*} and Norikazu Ueyama^{*c*}

^a Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructure, Nanjing University, Nanjing 210093, China. E-mail: <u>sunwy@nju.edu.cn</u>; Tel: +86-25-83593485

^b Department of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, China

^c Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

1^{a}			
Mn(1)-O(31)#1	2.3032(17)	Mn(1)-O(51)#2	2.1041(18)
Mn(1)-O(32)#1	2.2609(18)	Mn(1)-O(52)#3	2.1014(18)
Mn(1)-O(2)	2.236(2)	Mn(1)-N(11)	2.267(2)
O(2)-Mn(1)-O(32)#1	84.66(7)	O(2)-Mn(1)-N(11)	172.18(8)
O(2)-Mn(1)-O(51)#2	92.25(8)	O(32)#1-Mn(1)-O(51)#2	153.22(7)
O(2)-Mn(1)-O(52)#3	87.78(9)	O(32)#1-Mn(1)-O(52)#3	94.02(7)
O(2)-Mn(1)-O(31)#1	84.74(7)	O(52)#3-Mn(1)-N(11)	91.00(8)
O(31)#1-Mn(1)-N(11)	92.68(7)	O(32)#1-Mn(1)-N(11)	87.72(7)

Table S1. Selected bond lengths (Å) and angles (°) for complexes 1 - 6

O(51)#2-Mn(1)-N(11)	95.35(8)	O(31)#1-Mn(1)-O(52)#3	151.16(7)
O(51)#2-Mn(1)-O(52)#3	112.47(7)	O(31)#1-Mn(1)-O(32)#1	57.60(6)
O(31)#1-Mn(1)-O(51)#2	95.65(7)		
		2^b	
Mn(1)-O(1)	2.1867(17)	Mn(1)-N(2)#1	2.2729(19)
Mn(1)-O(3)#2	2.3734(17)	Mn(1)-O(1W)	2.1592(18)
Mn(1)-O(4)#2	2.2814(17)	Mn(1)-O(2W)	2.1631(19)
O(1)-Mn(1)-O(1W)	98.70(7)	O(1)-Mn(1)-O(2W)	86.84(7)
O(1)-Mn(1)-O(3)#2	136.29(6)	O(1)-Mn(1)-O(4)#2	81.59(6)
O(1)-Mn(1)-N(2)#1	136.45(7)	O(1W)-Mn(1)-O(2W)	171.53(7)
O(1W)-Mn(1)-O(3)#2	92.53(7)	O(1W)-Mn(1)-O(4)#2	91.63(7)
O(1W)-Mn(1)-N(2)#1	85.10(7)	O(2W)-Mn(1)-O(3)#2	87.78(8)
O(2W)-Mn(1)-O(4)#2	95.53(7)	O(2W)-Mn(1)-N(2)#1	86.48(7)
O(3)#2-Mn(1)-O(4)#2	55.85(6)	O(3)#2-Mn(1)-N(2)#1	86.33(6)
O(4)#2-Mn(1)-N(2)#1	141.91(7)		
		3 ^{<i>c</i>}	
Co(1)-O(1W)	2.143(2)	Co(1)-O(2)	2.056(2)
Co(1)-O(4)#1	2.014(2)	Co(1)-N(2)#2	2.125(3)
Co(1)-O(3)#3	2.106(2)	Co(1)-O(1)	2.320(2)
O(4)#1-Co(1)-O(2)	159.62(9)	O(4)#1-Co(1)-O(3)#3	89.79(9)
O(2)-Co(1)-O(3)#3	94.42(9)	O(4)#1-Co(1)-N(2)#2	106.73(9)
O(2)-Co(1)-N(2)#2	92.83(9)	O(3)#3-Co(1)-N(2)#2	94.39(9)
O(4)#1-Co(1)-O(1W)	85.57(9)	O(2)-Co(1)-O(1W)	88.24(9)
O(3)#3-Co(1)-O(1W)	173.13(8)	N(2)#2-Co(1)-O(1W)	91.80(10)
O(4)#1-Co(1)-O(1)	100.67(8)	O(2)-Co(1)-O(1)	59.68(8)
O(3)#3-Co(1)-O(1)	87.80(9)	N(2)#2-Co(1)-O(1)	152.51(9)
O(1W)-Co(1)-O(1)	88.08(9)		

Sup	plementary	Material	(ESI) fo	r CrystEngCo	omm
This jo	ournal is ©	The Roya	Society	of Chemistr	y 2010

Co(1)-O(1)	1.9791(18)	Co(1)-N(3)	2.159(2)
Co(1)-N(2)#1	2.151(2)	Co(1)-O(4)#2	2.0001(18)
Co(1)-O(3)#3	2.0004(18)		
O(1)-Co(1)-N(3)	87.64(8)	O(1)-Co(1)-N(2)#1	87.03(8)
O(1)-Co(1)-O(4)#2	127.73(8)	O(1)-Co(1)-O(3)#3	111.01(8)
N(2)#1-Co(1)-N(3)	172.21(8)	O(4)#2-Co(1)-N(3)	88.66(8)
O(3)#3-Co(1)-N(3)	88.19(8)	O(4)#2-Co(1)-N(2)#1	99.10(8)
O(3)#3-Co(1)-N(2)#1	88.41(8)	O(3)#3-Co(1)-O(4)#2	120.95(8)
		5 ^e	
Co(1)-O(4)#1	2.047(3)	Co(1)-O(1)	2.117(2)
Co(1)-O(2)	2.326(3)	Co(1)-O(1W)	2.116(3)
Co(1)-N(3)	2.101(3)	Co(1)-N(2)#2	2.126(3)
O(4)#1-Co(1)-N(3)	92.20(11)	O(4)#1-Co(1)-O(1)	109.56(9)
N(3)-Co(1)-O(1)	88.67(11)	O(4)#1-Co(1)-O(1W)	90.20(10)
N(3)-Co(1)-O(1W)	175.82(10)	O(1)-Co(1)-O(1W)	87.30(10)
O(4)#1-Co(1)-N(2)#2	96.27(10)	N(3)-Co(1)-N(2)#2	94.93(12)
O(1)-Co(1)-N(2)#2	153.78(11)	O(1W)-Co(1)-N(2)#2	88.21(11)
O(4)#1-Co(1)-O(2)	168.18(8)	N(3)-Co(1)-O(2)	87.83(10)
O(1)-Co(1)-O(2)	58.63(8)	O(1W)-Co(1)-O(2)	89.12(9)
N(2)#2-Co(1)-O(2)	95.49(10)		
		6 ^f	
Cu(1)-O(2)	1.9550(17)	Cu(1)-O(31)	1.9975(14)
Cu(1)-N(21)	1.9617(19)	Cu(1)-N(11)#1	2.1438(17)
Cu(1)-O(51)#2	2.1022(15)		
O(2)-Cu(1)-O(31)	88.35(7)	O(2)-Cu(1)-N(21)	175.43(7)
O(2)-Cu(1)-N(11)#1	89.66(7)	O(2)-Cu(1)-O(51)#2	88.60(6)
O(31)-Cu(1)-N(21)	88.47(7)	O(31)-Cu(1)-N(11)#1	135.48(6)

O(31)-Cu(1)-O(51)#2	129.83(6)	N(11)#1-Cu(1)-N(21)	94.91(7)
O(51)#2-Cu(1)-N(21)	90.92(7)	O(51)#2-Cu(1)-N(11)#1	94.55(6)

^aSymmetry transformations used to generate equivalent atoms: #1: x+1/2, y-1/2, -z+1/2, #2: x+1/2, y+1/2, -z+1/2, #3: -x+1/2, -y+1/2, z+1/2.

^bSymmetry transformations used to generate equivalent atoms: #1: x, y, -1+z, #2: x, -1+y, z.

^cSymmetry transformations used to generate equivalent atoms: #1: x, 1+y, z #2: 1+x, 1+y, -1+z #3: 1-x, 1-y, 1-z.

^dSymmetry transformations used to generate equivalent atoms: #1: -1+x ,-1+y, -1+z, #2: x, -1+y, z #3: 1-x, 1-y, -z.

^eSymmetry transformations used to generate equivalent atoms: #1: 1-x, -1/2+y, 3/2-z #2: -1+x, y, -1+z.

^fSymmetry transformations used to generate equivalent atoms: #1: 1+x, y, 1+z #2: 1-x, -1/2+y, 1/2-z.

D-H···A	Distance (D…A)	Angle (D-H-A)			
1					
$N(1)-H(1)\cdots O(31)^{\#1}$	2.904(3)	157			
C(12)-H(5)···O(4)	3.201(5)	138			
C(16)-H(8)····O(2) ^{#2}	3.398(4)	144			
$C(16)-H(8)\cdots O(52)^{\#3}$	3.365(4)	144			
C(23)-H(14)····O(1) ^{#4}	3.306(5)	142			
	2				
N(1)-H(1)···O(4W) ^{#5}	2.886(3)	166			
O(1W)-H(1WB)····O(2) ^{#6}	2.714(3)	157			
O(1W)-H(1WA)····O(5W)	2.785(3)	152			
O(2W)-H(2WB)····O(3) ^{#7}	2.730(3)	152			
O(2W)-H(2WA)····O(5W) ^{#8}	2.833(3)	152			
O(4W)-H(4WA)····O(6W)	2.860(4)	179			
O(4W)-H(4WB)…O(1)	2.899(3)	179			
O(3W)-H(3WB)(O4) ^{#9}	2.864(4)	178			
O(5W)-H(5WA)···O(1W)	2.785(3)	177			
3					
O(1W)-H(1WA)····O(3W) ^{#10}	2.785(4)	166			
O(2W)-H(2WA)····O(1) ^{#11}	2.829(4)	177			
O(2W)-H(2WB)…O(1W)	2.732(4)	177			
O(3W)-H(3WA)····O(1W) ^{#12}	2.785(4)	165			
O(3W)-H(3WB)…O(1)	2.873(4)	165			
4					
$N(1)-H(1)\cdots O(2)^{\#13}$	2.893(3)	163			
$C(3)-H(3)\cdots O(2)^{\#13}$	3.192(3)	142			
C(5)-H(5)-O(5)	2.803(3)	122			
$C(10)-H(10)-O(2)^{\#13}$	3.284(4)	158			
$C(11)-H(11)\cdots O(3)^{\#14}$	3.228(4)	138			

Table S2 Distance [Å] and angles [°] of hydrogen bonding for complexes 1 - $6^{\rm a}$

$C(16)-H(16)\cdotsO(5)^{\#15}$	3.055(4)	122			
5					
O(1W)-H(1WB)····O(2) ^{#16}	2.760(4)	164			
O(1W)-H(1WA)····O(2W) ^{#17}	2.712(4)	164			
O(2W)-H(2WA)····O(3) ^{#18}	2.718(4)	168			
O(2W)-H(2WB)····O(5) ^{#16}	3.050(5)	169			
6					
O(2)-H(2)···O(3)	2.662(3)	169			
$O(2)-H(3)\cdots O(32)^{\#19}$	2.671(2)	168			
$O(3)-H(4)\cdots O(1)^{\#20}$	2.974(3)	153			
O(3)-H(5)···O(52) ^{#19}	2.701(3)	163			
$N(22)-H(14)\cdots O(31)^{21}$	3.187(3)	145			
N(22)-H(14)····O(52) ^{#22}	3.061(3)	132			

^aSymmetry transformation used to generate equivalent atoms: #1 = 1/2-x, -1/2+y, z. #2 1-x, 1-y, 1-z. #3 1/2+x, 1/2+y, 1/2-z. #4 1/2+x, 1/2-y, 1-z. #5 1-x, 2-y, 1-z, #6 1-x, 2-y, -z, #7 2-x, 2-y, -z, #8 1+x, y, z. #9 x, -1+y, z. #10 1+x, y, z. #11 1-x, 1-y, 2-z. #12 -1+x, y, z. #13 1-x, 1-y, 1-z. #14 1+x, y, 1+z. #15 x, -1+y, z. #16 1-x, 1-y, 1-z. #17 1-x, -1/2+y, 1/2-z. #18 x, 3/2-y, -1/2+z. #19 1-x, 1-y, 1-z. #20 x, 1/2-y, 1/2+z. #21 1+x, y, z. #22 2-x, -1/2+y, 1/2-z.

Figure S1. Space-filling representation of the two-fold interpenetrated net with free DMF

molecule omitted for clarity in **1**.

Figure S2. Simplified 2D network of **2** with (6, 3) topology.

Figure S3. 3D structure of **2** with hydrogen bonds indicated by dashed lines.

Figure S4. 3D packing structure of **3** with hydrogen bonds indicated by dashed lines.

Figure S5. 3D packing structure of **4** with hydrogen bonds indicated by dashed lines.

(a)

(b)

Figure S6. 3D packing structures of **5** (a) and **6** (b) with hydrogen bonds indicated by dashed lines.

Figure S7. The TG curves of compounds 1 - 6.

2.4 -2.2 2.0 -

> 1.8 1.6

1.4

(c)

τ/κ

T/K

۵

(e)

Figure S8 Temperature dependence of $\chi_{\rm M}T$ and $\chi_{\rm M}^{-1}$ for **2** - **6**. The red solid line shows the Curie-Weiss fitting.

Figure S9. The powder X-ray diffraction patterns of compound **1**.

Supplementary Material (ESI) for CrystEngComm This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2010

Figure S10. The powder X-ray diffraction patterns of compounds 2-6: a – simulated; b – as-synthesized.