# Supplementary Material (ESI) for CrystEngComm # This journal is (c) The Royal Society of Chemistry 2010 data_global _journal_name_full CrystEngComm _journal_coden_Cambridge 1350 _publ_contact_author_name 'Gautam Desiraju' _publ_contact_author_email 'GAUTAM DESIRAJU@YAHOO.COM' _publ_section_title ; C-H***F-C Hydrogen Bonding in 1,2,3,5-Tetrafluorobenzene and other Fluoroaromatic Compounds and the Crystal Structure of Alloxan Revisited ; loop_ _publ_author_name 'Gautam Desiraju' 'Dieter Blaser' 'Roland Boese' 'Michael Kirchner' 'Tejender Thakur' data_tetrafluorbe _database_code_depnum_ccdc_archive 'CCDC 753706' _ccdc_compound_id 1 _audit_creation_method SHELXL-97 _chemical_name_systematic ; 1.2.3.5-Tetrafluorobenzene ; _chemical_name_common 1.2.3.5-Tetrafluorobenzene _chemical_melting_point ? _chemical_formula_moiety ? _chemical_formula_sum 'C6 H2 F4' _chemical_formula_weight 150.08 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' F F 0.0171 0.0103 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting monoclinic _symmetry_space_group_name_H-M P2(1)/c loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, y+1/2, -z+1/2' '-x, -y, -z' 'x, -y-1/2, z-1/2' _cell_length_a 3.703(4) _cell_length_b 14.572(17) _cell_length_c 10.573(13) _cell_angle_alpha 90.00 _cell_angle_beta 96.340(19) _cell_angle_gamma 90.00 _cell_volume 567.1(11) _cell_formula_units_Z 4 _cell_measurement_temperature 173(2) _cell_measurement_reflns_used 715 _cell_measurement_theta_min 2.38 _cell_measurement_theta_max 25.19 _exptl_crystal_description cylindric _exptl_crystal_colour colorless _exptl_crystal_size_max 0.3 _exptl_crystal_size_mid 0.3 _exptl_crystal_size_min 0.3 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.758 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 296 _exptl_absorpt_coefficient_mu 0.195 _exptl_absorpt_correction_type none _exptl_absorpt_correction_T_min ? _exptl_absorpt_correction_T_max ? _exptl_absorpt_process_details ? _exptl_special_details ; The crystallization was performed on the diffractometer at a temperature of 180 K with a miniature zone melting procedure using focused infrared-laser-radiation according to: R. Boese, M.Nussbaumer, "In Situ crystallisation Techniques", in: "Organic Crystal Chemistry", Ed. D.W. Jones, Oxford University Press, Oxford,England, (1994) 20-37 ; _diffrn_ambient_temperature 173(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type ; Siemens SMART three axis goniometer with APEX II area detector system Bruker D8 KAPPA series II with APEX II area detector system ; _diffrn_measurement_method ; Data collection strategy APEX 2 / COSMO with chi = 0 ; _diffrn_detector_area_resol_mean 512 _diffrn_reflns_number 2280 _diffrn_reflns_av_R_equivalents 0.0873 _diffrn_reflns_av_sigmaI/netI 0.0804 _diffrn_reflns_limit_h_min -4 _diffrn_reflns_limit_h_max 4 _diffrn_reflns_limit_k_min -18 _diffrn_reflns_limit_k_max 19 _diffrn_reflns_limit_l_min -9 _diffrn_reflns_limit_l_max 14 _diffrn_reflns_theta_min 2.39 _diffrn_reflns_theta_max 28.71 _reflns_number_total 1309 _reflns_number_gt 736 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'BRUKER AXS SMART APEX 2 Vers. 3.0-2009' _computing_cell_refinement 'BRUKER AXS SMART APEX 2 Vers. 3.0-2009' _computing_data_reduction 'BRUKER AXS SMART APEX 2 Vers. 3.0-2009' _computing_structure_solution 'BRUKER AXS SMART APEX 2 Vers. 3.0-2009' _computing_structure_refinement 'BRUKER AXS SHELXTL (c) 2008 / Vers. 2008/4' _computing_molecular_graphics 'BRUKER AXS SHELXTL (c) 2008 / Vers. 2008/4' _computing_publication_material 'BRUKER AXS SHELXTL (c) 2008 / Vers. 2008/4' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0979P)^2^+0.0000P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment ; Riding model on idealized geometrics with the 1.2 fold isotropic displacement parameters of the equivalent Uij of the corresponding carbon atom ; _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 1309 _refine_ls_number_parameters 91 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.1133 _refine_ls_R_factor_gt 0.0671 _refine_ls_wR_factor_ref 0.1767 _refine_ls_wR_factor_gt 0.1502 _refine_ls_goodness_of_fit_ref 0.976 _refine_ls_restrained_S_all 0.976 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group C1 C 0.5806(9) 0.70098(18) 0.7986(3) 0.0362(7) Uani 1 1 d . . . C2 C 0.4036(9) 0.69211(18) 0.6772(3) 0.0377(7) Uani 1 1 d . . . C3 C 0.3339(8) 0.60500(19) 0.6289(2) 0.0354(7) Uani 1 1 d . . . C4 C 0.4356(8) 0.52799(17) 0.6999(3) 0.0363(7) Uani 1 1 d . . . H4 H 0.3845 0.4674 0.6661 0.044 Uiso 1 1 d R . . C5 C 0.6085(8) 0.54136(17) 0.8200(3) 0.0357(7) Uani 1 1 d . . . C6 C 0.6841(8) 0.6265(2) 0.8721(3) 0.0379(7) Uani 1 1 d . . . H6 H 0.8101 0.6343 0.9557 0.045 Uiso 1 1 d R . . F1 F 0.6472(7) 0.78597(12) 0.8433(2) 0.0637(7) Uani 1 1 d . . . F2 F 0.3008(7) 0.76601(13) 0.6071(2) 0.0613(7) Uani 1 1 d . . . F3 F 0.1611(6) 0.59731(13) 0.51132(16) 0.0554(6) Uani 1 1 d . . . F5 F 0.7113(6) 0.46655(12) 0.89014(18) 0.0569(6) Uani 1 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 C1 0.0340(18) 0.0328(14) 0.0423(17) -0.0058(10) 0.0060(13) -0.0042(11) C2 0.0394(19) 0.0353(14) 0.0391(16) 0.0072(11) 0.0075(13) 0.0017(12) C3 0.0313(18) 0.0483(17) 0.0266(13) 0.0012(11) 0.0031(12) -0.0005(11) C4 0.0356(18) 0.0331(14) 0.0403(16) -0.0047(10) 0.0056(13) 0.0000(11) C5 0.0331(17) 0.0363(15) 0.0373(15) 0.0082(11) 0.0020(12) 0.0068(11) C6 0.0316(18) 0.0475(17) 0.0343(15) -0.0030(11) 0.0023(13) 0.0002(12) F1 0.0833(17) 0.0374(10) 0.0688(15) -0.0116(9) 0.0012(12) -0.0101(10) F2 0.0804(17) 0.0437(11) 0.0584(13) 0.0172(8) 0.0018(11) 0.0088(9) F3 0.0590(14) 0.0699(13) 0.0342(10) -0.0009(8) -0.0085(9) -0.0054(10) F5 0.0697(15) 0.0451(11) 0.0537(12) 0.0140(8) -0.0038(10) 0.0140(9) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag C1 F1 1.339(3) . ? C1 C6 1.366(4) . ? C1 C2 1.381(5) . ? C2 F2 1.339(3) . ? C2 C3 1.382(4) . ? C3 F3 1.339(3) . ? C3 C4 1.379(4) . ? C4 C5 1.372(5) . ? C5 F5 1.349(3) . ? C5 C6 1.373(4) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag F1 C1 C6 120.4(3) . . ? F1 C1 C2 117.7(2) . . ? C6 C1 C2 121.9(2) . . ? F2 C2 C1 121.1(2) . . ? F2 C2 C3 120.3(3) . . ? C1 C2 C3 118.7(2) . . ? F3 C3 C4 120.7(2) . . ? F3 C3 C2 118.1(2) . . ? C4 C3 C2 121.2(3) . . ? C5 C4 C3 117.4(2) . . ? F5 C5 C4 117.9(2) . . ? F5 C5 C6 118.5(3) . . ? C4 C5 C6 123.6(2) . . ? C1 C6 C5 117.3(3) . . ? _diffrn_measured_fraction_theta_max 0.900 _diffrn_reflns_theta_full 28.71 _diffrn_measured_fraction_theta_full 0.900 _refine_diff_density_max 0.359 _refine_diff_density_min -0.277 _refine_diff_density_rms 0.077 _vrf_PLAT029_tetrafluorbe ; PROBLEM: _diffrn_measured_fraction_theta_full Low ....... 0.90 RESPONSE: The compounds are liquids at RT. The single crystals are formed by an in-situ zone melting process inside a quartz capillary using an IR-laser. The experimental setup does only allow for a omega scan of the single crystal. This limits the completeness to 75% to 95% depending on the crystal system. ;