Supporting information for

Influence of the solvent of crystallization on the orientational disorder of (*trans*)-4-chloro-4'-nitrostilbene

Norwid-Rasmus Behrnd^{*a*}, Gaël Labat^{*a,b*}, Paloth Venugopalan^{*b,c*}, Jürg Hulliger^{*a,***}, Hans-Beat Bürgi^{*b,**}

^{*a*}Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Berne, Switzerland; ^{*b*}Laboratory of Chemical Crystallography, University of Bern, Freiestrasse 3, CH-3012 Berne, Switzerland; ^{*c*}Department of Chemistry, Panjab University, Chandigarh, 160 014 India

*hans-beat.buergi@krist.unibe.ch, **hulliger.publication@iac.unibe.ch

Contents

Table S1	Lattice parameters determined for $P2_1$ model	S 2
Table S2	<i>R</i> -factor test of significance between the $P2_1$ model and the pseudo $P2_1/c$ model.	S 3
Table S3	Presence of superstructure reflections $k'_0 l'_0$	S 4
Table S4	Correlation coefficients between the S.O.F. <i>p</i> 's in the A1 model	S 4
Table S5	Sums and differences of S.O.F.s with s.u.'s in A1 model	S4
Figure S1	S.O.F populations p_A, p_B, p_C, p_D for different specimens	S5

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	CIR- I		NO R7 II	HOH	, CIR		37 III	CIR ₇ IV	CITAI	Tol I	ToT		IO B7 I	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	UDZ II NO ₂ BZ II svnchrotron. $\lambda = 0.7100(5)$	rotron. $\lambda = 0.7100(5)$	7100(5	EtUn)Å	רוד 	17 CII	92 III 22	cubz iv ealed tube.	СП01 Мо Ка:	1011 = 0.71073 Å	101	4	102 BZ 1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.91412(16) 3.91649(10) 3.9	6) 3.91649(10) 3.9	10) 3.9	1514(;	5) 3.9	200(3) 3.	9164(2)	3.9100(2)	3.9182(2)) 3.9236	(3) 3.92	(39(2)	3.9220(2)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12.9559(6) $12.9357(3)$ 12.9	12.9357(3) 12.9	12.9	6036	16) 12.9	790(10) 12	9581(6)	12.9349(7)	12.9555(8)) 12.9740	(8) 12.97	33(6) 1	(2.9245(7))	
6(12) 93.153(3) 93.238(2) 93.352(2) 93.254(3) 93.175(3) 93.192(2) 92.957(2) (14) 621.63(12) 620.03(5) 617.03(12) 620.24(10) 622.15(10) 622.11(8) 622.85(9) 1.39 1.39 1.40 1.390 1.39 1.39 1.39	12.2307(6) 12.3004(3) 12.2	12.3004(3) 12.2) 12.2	2634(16) 12.2	368(9) 12	2370(5)	12.2210(6)	12.2381(7)) 12.2406	(7) 12.23	98(6) 1	12.3038(7)	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	93.221(4) 92.999(2) 93.19	92.999(2) 93.19	93.19	16(1)	2) 93.1	53(3) 93.	(238(2))	93.352(2)	93.254(3)	93.175(3	3) 93.19	(2(2)) = 9	92.957(2)	
1.39 1.40 1.390 1.39 1.39 1.39	619.25(8) $622.32(3)$ 619.422	622.32(3) 619.422	619.422	(14) 621.6	3(12) 620	03(5) 6	(17.03(12))	620.24(10)	622.15(10)) 622.11	(8) 62	22.85(9)	
	1.39 1.39 1.39	1.39 1.39	1.39		1.3	9	39	1.40	1.390	1.39	1.39		1.39	
	Me ₂ CO EtOAc MeCN I	EtOAc MeCN I	MeCN I		MeCN II	DMFI	DMFI	I DMSC	DI ^a DMS	O II ^a M	leOH	stati	stical analy	ysis
MeCN II DMF I DMF II DMSO I ^a DMSO II ^a MeOH statistical analysis				•1	sealed tube,	Mo Kα, λ :	= 0.71073	Å				present o	data <	dz> ^b
MeCN II DMF I DMF II DMSO I ^a DMSO II ^a MeOH statistical analysis sealed tube, Mo K α , $\lambda = 0.71073$ Å $$	3.9118(2) 3.9227(2) 3.9216(3	3.9227(2) 3.9216(3	3.9216(3		3.9221(4)	3.9208(2	3.922	0(2) 3.916	92(1) 3.91	(73(1) 3.	9239(3)	3.919	(4) 3.	921(4)

_	
4	
Ē	
, 2	1
р ,	
ţ	
0	5
2	
P1-0)
đ	2
0.1	
oto 0	2
9110	
100	
÷	
C	
÷	•
U 0	2
Ż	
f	

sample	Me_2CO	EtUAc	MeCN I	MeCN II	DMFI	DMF II	DMSU1"	DMSO II"	MeOH	statistical	analysis
radiation	1			sealed tube,	Mo K α , $\lambda =$	0.71073 Å				present data	 bz>b
a (Å	3.9118(2)	3.9227(2)	3.9216(3)	3.9221(4)	3.9208(2)	3.9220(2)	3.9192(1)	3.9173(1)	3.9239(3)	3.919(4)	3.921(4)
b (Å)	12.9470(5)	12.9764(7)	12.9663(10)) 12.9733(12) 12.9696(7)	12.9786(5)	12.9630(4)	12.9563(3)	12.9707(9)	12.961(15)	12.961(12)
c (Å)	12.2260(4)	12.2535(6)	12.2348(9)	12.2509(12) 12.2508(7)	12.2507(6)	12.2399(4)	12.2343(3)	12.2375(8)	12.245(20)	12.207(17)
β (°)	93.191(2)	93.200(2)	93.153(3)	93.149(3)	93.138(2)	93.128(2)	93.188(2)	93.151(1)	93.236(3)	93.172(81)	93.248(15)
V (Å ³)	618.24(6)	622.76(6)	621.18(8)	622.42(11)	622.03(9)	622.65(7)	620.89(5)	619.99(4)	521.84(8)	621.0(1.5)	619.2 (2.1)
$\rho (\mathrm{gcm^{-3}})$	1.40	1.39	1.39	1.39	1.39	1.39	1.39	1.39	1.39	1.389(3)	1.393(5)

^a DMSO I and DMSO II refer to the same crystal. ^b Analysis of 9 diffraction experiments with 7 different samples grown from benzene, as reported in Reference 3.

Table S2: <i>R</i> -ra	utio test of	significan	ce between	the $P2_1$ m	nodel and	the psei	udo P2 ₁	c model			
Sample	CIB _z I	CIB _z II	CIB _z III	CIB _z IV	CITol	Tol I	Tol II	NO ₂ Bz I	NO_2Bz	II Me ₂ CC	
Test 1 = $\frac{RI(I > 2\sigma(I))(P2_1/c)}{RI(I > 2\sigma(I))(P2_1)}$	1.220	1.000	1.167	1.174	1.087	1.132	1.204	1.019	1.018	1.023	
Test 2 = $\frac{R1}{R1}$ (all reflections)($P2_1/c$) $R1$ (all reflections)($P2_1$)	1.098	1.000	1.089	1.082	1.041	1.058	1.102	1.009	1.000	1.031	
Test 3 = $\frac{wR2(P2_1/c)}{wR2(P2_1)}$	1.218	1.012	1.211	1.162	1.131	1.143	1.227	1.011	1.015	1.075	
$R_{p,n-p}$ at $p = 0.005$ $R_{p,n-p}$ at $p = 0.05$	1.029 1.007	1.019 1.004	1.022 1.005	1.023 1.006	1.026 1.006	1.025 1.006	$1.021 \\ 1.005$	1.027 1.007	1.018 1.004	1.024 1.006	
											1
Sample	EtOAc	MeCN I	MeCN II	DMF I	DMF II	DMS	O I ^a D	MSO II ^a	EtOH N	1eOH	
Test 1 = $\frac{R1(I > 2\sigma(I))(P2_1/c)}{R1(I > 2\sigma(I))(P2_1)}$	1.194	1.000	1.000	1.000	1.048	1.02	24	1.047	1.091	1.200	
Test 2 = $\frac{R1(\text{all reflections})(P2_1/c)}{R1(\text{all reflections})(P2_1)}$	1.105	1.000	1.000	1.009	1.014	1.01	7	1.016	1.098	060.1	
Test 3 = $\frac{wR2(P2_1/c)}{wR2(P2_1)}$	1.248	1.000	1.000	1.017	1.053	1.04	t3	1.067	1.195	1.245	
$R_{p,n-p}$ at $p = 0.005$ $R_{p,n-p}$ at $p = 0.05$	$1.026 \\ 1.006$	1.031 1.007	1.034 1.008	1.026 1.006	1.026 1.006	1.02 1.00	22)5	1.016 1.004	1.015 1 1.004 1	1.023 1.006	
p = 1, $n =$ number of unique reflec ^a DMSO I and DMSO II refer to the	ctions with e same cry	$1 > 2\sigma(I)$ stal.) (see Table	e 1).							

S3

solvent	n ^a	$\langle I/\sigma angle$	$n(I > 2\sigma(I))$	% ^b	expression
Tol I	594	1.56	195	32.83	++
Tol II	717	3.20	395	55.09	++
EtOAc	634	0.67	103	16.25	+
Me_2CO	804	0.74	160	19.90	+
DMSO II	4411	0.13	234	5.30	+
$\langle Bz \rangle^c$	3904	5.01	2061	52.79	++

Table S3: Presence of superstructure reflections $k'_{o}l'_{o}$.

^a From Table 2. ^b Percentage of *n* with $I > 2\sigma(I)$ compared to *n*.

^c See reference 3.

sample correlation	Me ₂ CO	DMSO II	EtOAc	Tol I	Tol II
<i>р</i> с, <i>р</i> А <i>р</i> D, <i>р</i> А <i>р</i> А, <i>р</i> А <i>р</i> С, <i>р</i> А	-0.955 -0.953 -0.973 0.949	-0.641 -0.638 -0.997 0.637	-0.733 -0.678 -0.651 0.526	$\begin{array}{c} 0.952 \\ 0.953 \\ -0.876 \\ -0.963 \\ 0.964 \end{array}$	-0.639 -0.614 -0.900 0.443 0.426
$p_{\rm D}, p_{\rm A}$ $p_{\rm D}, p_{\rm C}$	-0.946 -0.880	-0.634 -0.273	-0.132	-0.964 -0.993	0.426 0.196

Table S4: Correlation coefficients between the S.O.F. *p*'s in the A1 model.

Table S5: Sums and differences of S.O.F.s with s.u.'s in A1 model.

solvent	$p_{\rm A} + p_{\rm B}$	$p_{\rm A} - p_{\rm B}$	$p_{\rm C} + p_{\rm D}$	$p_{\rm C} - p_{\rm D}$
Tol I	0.879(10)	0.247(39)	0.698(9)	-0.062(146)
Tol II	0.841(10)	0.043(45)	0.738(9)	0.288(8)
EtOAc	0.838(8)	0.068(18)	0.651(8)	0.149(9)
Me ₂ CO	0.988(6)	0.042(50)	0.818(5)	0.102(21)
DMSO II	0.980(4)	0.002(106)	0.848(4)	0.038(5)
$\langle Bz \rangle^{a}$	0.926(20)	0.113(33)	0.822(20)	0.391(63)

^a See reference 3.

Figure S1: S.O.F. populations p_A, p_B, p_C, p_D for different specimens. The data for $\langle bz \rangle$ represent the average and s.u.s for 9 separate experiments (see reference 3).

*