S1

Supporting Information

Step-by-Step Growth of Highly Oriented and Continuous Seeding Layers of [Cu₂(ndc)₂(dabco)] on Bare Oxide and Nitride Substrates.[†]

Kirill Yusenko,^{#a} Mikhail Meilikhov,^{#a} Denise Zacher,^a Florian Wieland,^b Christian Sternemann,^b Xia Stammer,^c Tatjana Ladnorg,^c Christof Wöll^c and Roland A. Fischer^a*

^a Anorganische Chemie II, Organometallics and Materials, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780, Bochum, Germany. E-mail: roland.fischer@rub.de;

Fax: +49 (0)234 32-14174; Tel: +49 (0)234 32-24174

^b Experimentelle Physik I, Universität Dortmund, 44227, Dortmund, Germany.

^c Institut für Funktionelle Grenzflächen, Forschungszentrum Karlsruhe, 76021, Karlsruhe, Germany.

[#]Authors equally contributed

Figure S1. FTIR spectra (a) of 700 nm thick film of $[Cu_2(ndc)_2(dabco)]$ deposited with method **C** on SiO₂ and (b) of bulk $[Cu_2(ndc)_2(dabco)]$ material synthesized according the reported method.^[7]

Figure S2. (a) PXRD data of bulk $[Cu_2(ndc)_2(dabco)]$ material, simulated PXRD of $[Cu_2(ndc)_2(dabco)]$ (b) and obtained PXRD (c) for oriented in [001] direction thin film after 40 numbers of growth cycles at 50 °C on the Si₃N₄ substrate. The bulk material was synthesized according the reported method.^[7]

Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry 2010

Figure S3. Scheme of "Step-by-step" growth apparatus.

Figure S4. In situ QCM studies of the growth of $[Cu_2(ndc)_2(dabco)]$ on (a) SiO₂ and (b) Al₂O₃ substrates according to method **B**.

Figure S5. 3D (left) and topographic (right) AFM images of 25 x 25 μ m area of [Cu₂(ndc)₂(dabco)] thin film on SiO₂ deposited with the method **B** (40 cycles at 50 °C). The rms roughness is 250 nm.

Figure S6. PXRD data of $[Cu_2(ndc)_2(dabco)]$ deposited on SiO₂ with the method **B** (40 cycles). (a) The red line is the out-of-plane diffraction pattern, the purple line is the in-plane diffraction pattern and the blue line is the pattern for $\varphi=45^{\circ}$. (b) The calculated profile for $[Cu_2(ndc)_2(dabco)]$ bulk material. (c) The 2D pattern of $[Cu_2(ndc)_2(dabco)]$ film recorded with MAR435 image plate detector.

Figure S7. Scanning electron microscopic overview image of $[Cu_2(ndc)_2(dabco)]$ thin film (40 cycles with method **B** at 50 °C and 2 washing cycles) obtained on the SiO₂ substrate (a) and the corresponding cross section image (b).

Figure S8. Scanning electron microscopic overview image of $[Cu_2(ndc)_2(dabco)]$ thin film (40 cycles with method **B** at 50 °C and 4 washing cycles) obtained on the SiO₂ substrate (a) and the corresponding cross section image (b).

Figure S9. SEM images of $[Cu_2(ndc)_2(dabco)]$ thin film on (a) Ta_2O_5 and (b) Si_3N_4 grown with method **B** (40 cycles at 50 °C).

Substrate/Cycles number	Line position, 20	Fwhm, 2θ ^[a]	<l>, nm^[b]</l>
SiO ₂ /40	9.21	0.091	29±5
Al ₂ O ₃ /40	9.31	0.141	23±5
SiN/40	9.23	0.187	22±5
SiN/25	9.20	0.156	22±5

Table S1. Line-profile parameters for (0 0 1) diffraction line in PXRD for thin films grown by method **B**.

[a] The full width at half maximum (Fwhm) was obtained from single line analysis.

[b] Domain-size was calculated from single line Fourier analysis of PXRD data.