Supporting Information

Electrostatic consideration of ZnO crystal.

As shown in Fig. S1(a), the ZnO crystal with a hexagonal rod shape elongated along the *c*-axis is conventionally achieved due to a large anisotropic growth habit of the individual facet, $V_{[0001]} >> V_{[01-10]} > V_{[000-1]}$.^{1, 2} As a consequence of such a typical growth habit, two different polar surfaces as the Zn-(0001) plane and O-(000-1) one are naturally created on opposite direction of the ZnO crystal. According to the classical electrostatics, however, this ionic crystal with alternating layers of opposite charge density (marked ± σ in Fig. S1(b)) induces highly unstable situation because a net dipole moment and electrostatic potential increase monotonically upon increasing slab thickness along the *c*-axis as shown in Fig. S1(c).³⁻⁵ In order to overcome such a instability of the ideal ionic crystal, a rearrangement of the surface charge density between the Zn-(0001) and O-(000-1) should be developed by a factor of $\sigma' = \sigma R_2/(R_1 + R_2) \approx 0.76\sigma$, where R_1 and R_2 are interlayer spacing between Zn²⁺ and O²⁻ ions as represented in Fig. S1(b), through an effective charge transfer of 0.17electrons from the O-(000-1) plane to the Zn-(0001) one.^{4, 6} Consequently, the O-(000-1) surface (or the Zn-(0001) one) is less negative (or positive) and the monotonic increase of the electronic potential in the ZnO crystal could be also suppressed as shown in Fig. S1(d).³

Temperature resolved XRD study of Zn-HDS-60h.

Temperature resolved XRD patterns were obtained by heating from roomtemperature (RT) to 150° C in the conventional furnace. Fig. S2(a) shows the XRD pattern of the Zn-HDS-60h with interlayer spacing of 20.0 Å and the (00*l*) peaks were shifted toward high angle, which the new (00*l*) peaks are corresponding to the interlayer spacing of 16.0 Å, by heating at 50 and 100 °C as shown in Fig. S2(b) and (c). Fig. S2(d) shows the interlayer distance of the Zn-HDS-60h is completely changed from 20.0 Å to 16.0 Å by heating at 150°C. This result implies that water molecules were intercalated as double layer into the Zn-HDS-60h. In usually, eliminating temperature of the interlayer water is higher than the normal boiling temperature (100 °C) due to protection from the external thermal energy by the inorganic unit blocks. One of the interesting facts is that such a decrease of the interlayer distance was immediately recovered from 16.0 Å to 20.0 Å under the ambient humidity condition for a few hours. It demonstrates that the water molecules in the Zn-HDS-60h play important role in the electrostatic charge compensation between the intercalated molecules and building blocks.

Inductively coupled plasma (ICP) and elemental (CHN) analysis of Zn-HDS-1h and Zn-HDS-60h.

From inductively coupled plasma (ICP) analysis, Zn concentration in 10 mg weight of the Zn-HDS-1h and the Zn-HDS-60h was determined as 8.10×10^{-5} mol and 8.26×10^{-5} mol, respectively. In addition, Wt% of C, H, and N elements in 10mg was 7.8% (C), 2.9% (H), 0.0% (N) for the Zn-HDS-1h and 4.9% (C), 3.0% (H), 0.0% (N) for the Zn-HDS-60h. The general formula of HDSs is $[(M^{2+}_{1-x}, M'^{2+}_{1+x})(OH)_{3(1-y)}]^+X^{n-}_{(1+3y)/n}\cdot zH_2O$ in which M and

M' corresponds to divalent transition metals (Cu, Co, Ni, Mn, and Zn) and Xⁿ⁻ is the intercalated anions.⁸ In the present study, M and M' is Zn and X is CH₃COO⁻ for the Zn-HDS-1h and CH₃COO⁻ and CO₃²⁻ for the Zn-HDS-60h as well explained by FT-IR study. Therefore, formula of the Zn-HDS-1h and the Zn-HDS-6h could be represented as $[Zn_2(OH)_{3(1-y)}]^+CH_3COO^-_{(1+3y)}:zH_2O$ and $[Zn_2(OH)_{3(1-y)}]^+[CH_3COO]^-_{(1+3y)}:zH_2O$, respectively. From the ICP and CHN analysis, the *y* parameter was determined as -0.067 for the Zn-HDS-1h and -0.198 for the Zn-HDS-60h and the *z* parameter corresponds to 0.8 for

the Zn-HDS-1h and 1.2 for the Zn-HDS-60h. Therefore, composition stoichiometry of the Zn-HDS-1h and Zn-HDS-60h is $Zn_2(OH)_{3.2}(CH_3CO_2^{-})_{0.8} \cdot 0.8H_2O$ and $Zn_2(OH)_{3.6}(CH_3CO_2^{-})_{0.4}(CO_3^{2-})_{0.2} \cdot 1.2H_2O$, respectively.

References.

1. J. -H. Choy, E. -S. Jang, J. -H. Won, J. H. Chung, D. J. Jang and Y. W. Kim, *Adv. Mater.*, 2003, **15**, 1911.

2. J. -H. Choy, E. -S. Jang, J. -H. Won, J. H. Chung, D. J. Jang and Y. W. Kim, *Appl. Phys. Lett.*, 2004, **84**, 287.

3. C. Noguera, J. Phys.: Condens. Matter, 2000, 12, R367.

4. O. Dulub, U. Diebold and G. Kresse, *Phys. Rev. Lett.*, 2003, **90**, 016102.

5. B. Meyer and D. Marx, Phys. Rev. B, 2003, 67, 035403.

 A. Wander, F. Schendin, P. Steadman, A. Norris, R. McGrath, T. S. Turner, G. Thornton and N. M. Harrison, *Phys. Rev. Lett.*, 2001, 86, 3811.

7. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry, 5th ed., *Wiley-Interscience*, New York, 1997.

8. L. Poul, N. Jouini and F. Fiévet, Chem. Mater., 2000, 12, 3123.

Figure captions.

Fig. S1. (a) Crystal structure of the hexagonal ZnO rod. (b) Charge distribution in ZnO crystal along the *c*-axis. R1 and R2 are interlayer spacing between Zn^{2+} and O^{2-} and $\pm \sigma$ is charge density of alternative layers along the normal to the surface. (c) and (d) Variation of

This journal is (c) The Royal Society of Chemistry 2010

electric field (E) and potential (V) upon the number (*N*) of double layer with opposite charge along the *c*-axis (adapted from Ref. 3).

Fig. S2. Temperature resolved XRD patterns of the Zn-HDS-60h obtained from heat treatment at (c) RT, (b) 50, (c) 100, and (d) 150 °C.

Table S1. Infrared frequencies and band assignments for acetate and carbonate molecules intercalated into the interlayer of Zn-HDS (adapted from Ref. 7).

Table S2. Correlation table for D_{3h} , C_{2v} , and C_s (adapted from Ref. 7).

Supplementary Material (ESI) for CrystEngComm

This journal is (c) The Royal Society of Chemistry 2010

Fig. S1.

Supplementary Material (ESI) for CrystEngComm

This journal is (c) The Royal Society of Chemistry 2010

This journal is (c) The Royal Society of Chemistry 2010

Table S1.

[CH₃COO]-			[CO ₃] ²⁻		
v (cm ⁻¹)	C _{2v}	Band assignment	v (cm⁻¹)	D _{3h}	Band assignment
1338.4	A ₁	δ _s (CH ₃)	1552.4	E´(v ₃)	v _{as} (CO ₃ ²⁻)
1398.1		v _s (COO)	1506.1		
923.7		v(CC)	1392.4		
678.8		δ(ΟCΟ)	700.0		
	A ₂	ρ _t (CH ₃)	1099.2	A ₁ ´(v ₁)	v _s (CO ₃ ²⁻)
1552.4	B ₁	v _{as} (COO)	1043.3		
-		83(/	945.0		
1430.7		δ _{as} (CH ₃)	831.2	A₂´´(v₂)	π (CO ₃ ²⁻)
1018.2		ρ _r (CH ₃)	740 5	F '(y.)	δ (CO-2-)
472.5		δ(CH) or ρ _r (COO)	700.0	- (+4)	
1047.1	B ₂	ρ _r (CH ₃)			
617.1		π(CH) or π (COO)			

v; stretching, δ ; in-plane bending, ρ_r ; rocking, ρ_t ; twisting, π ; out-of-plane bending. Subscripts *as* and *s* denote antisymmetric and symmetric modes, respectively.

Table S2.

Point group	v_1	ν ₂	v ₃	V ₄
D _{3h}	A ₁ ′(R)	A ₂ " (I)	E´ (I, R)	E´ (I, R)
C _{2v}	A ₁ (I, R)	B ₁ (I, R)	A ₁ (I, R) + B ₁ (I, R)	A ₁ (I, R) + B ₁ (I, R)
C _s	A′ (I, R)	A″ (I, R)	A´(I, R) + A″(I, R)	A´(I, R) + A"(I, R)