# Supplementary Material (ESI) for CrystEngComm # This journal is (c) The Royal Society of Chemistry 2010 data_global _journal_name_full CrystEngComm _journal_coden_Cambridge 1350 _publ_contact_author_name 'Heyong He' _publ_contact_author_email HEYONGHE@FUDAN.EDU.CN _publ_section_title ; Honeycomb nanoscale-porous material constructed from copper complexes and mixed-addenda Lindqvist-type polyoxoanions ; loop_ _publ_author_name 'Heyong He' 'Chengbo Du' 'Zuping Kong' 'Yuanhang Ren' 'Chunling Wang' ; Linhong Weng ; 'Bin Yue' data_192 _database_code_depnum_ccdc_archive 'CCDC 744592' _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety ? _chemical_formula_sum 'C54 H24 Cu3 N6 O50 S12 V3.96 W8.04 ' _chemical_formula_weight 3812.08 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' O O 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' V V 0.3005 0.5294 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Cu Cu 0.3201 1.2651 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' W W -0.8490 6.8722 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' S S 0.1246 0.1234 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting hexagonal _symmetry_space_group_name_H-M P6/mcc loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-y, x-y, z' '-x+y, -x, z' '-x, -y, z' 'y, -x+y, z' 'x-y, x, z' 'y, x, -z+1/2' 'x-y, -y, -z+1/2' '-x, -x+y, -z+1/2' '-y, -x, -z+1/2' '-x+y, y, -z+1/2' 'x, x-y, -z+1/2' '-x, -y, -z' 'y, -x+y, -z' 'x-y, x, -z' 'x, y, -z' '-y, x-y, -z' '-x+y, -x, -z' '-y, -x, z-1/2' '-x+y, y, z-1/2' 'x, x-y, z-1/2' 'y, x, z-1/2' 'x-y, -y, z-1/2' '-x, -x+y, z-1/2' _cell_length_a 23.717(6) _cell_length_b 23.717(6) _cell_length_c 22.033(8) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 120.00 _cell_volume 10733(5) _cell_formula_units_Z 2 _cell_measurement_temperature 273(2) _cell_measurement_reflns_used ? _cell_measurement_theta_min 1.72 _cell_measurement_theta_max 27.90 _exptl_crystal_description block _exptl_crystal_colour green _exptl_crystal_size_max 0.22 _exptl_crystal_size_mid 0.06 _exptl_crystal_size_min 0.04 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.180 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 10996 _exptl_absorpt_coefficient_mu 4.900 _exptl_absorpt_correction_type Multi-scan _exptl_absorpt_correction_T_min 0.186 _exptl_absorpt_correction_T_max 0.374 _exptl_absorpt_process_details 'ABSCOR by T.Higashi 8 March, 1995' _exptl_special_details ; ? ; _diffrn_ambient_temperature 273(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'CCD area detector' _diffrn_measurement_method 'phi and omega scans' _diffrn_detector_area_resol_mean '100x100 microns' _diffrn_standards_number none _diffrn_standards_interval_count none _diffrn_standards_interval_time none _diffrn_standards_decay_% none _diffrn_reflns_number 47713 _diffrn_reflns_av_R_equivalents 0.1325 _diffrn_reflns_av_sigmaI/netI 0.0948 _diffrn_reflns_limit_h_min -17 _diffrn_reflns_limit_h_max 30 _diffrn_reflns_limit_k_min -31 _diffrn_reflns_limit_k_max 26 _diffrn_reflns_limit_l_min -28 _diffrn_reflns_limit_l_max 28 _diffrn_reflns_theta_min 1.72 _diffrn_reflns_theta_max 27.90 _reflns_number_total 4317 _reflns_number_gt 1764 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'Bruker SMART' _computing_cell_refinement 'Bruker SMART' _computing_data_reduction 'Bruker SAINT' _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics 'Bruker SHELXTL' _computing_publication_material 'Bruker SHELXTL' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.2000P)^2^+0.0000P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment ? _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 4317 _refine_ls_number_parameters 105 _refine_ls_number_restraints 7 _refine_ls_R_factor_all 0.1766 _refine_ls_R_factor_gt 0.0728 _refine_ls_wR_factor_ref 0.3215 _refine_ls_wR_factor_gt 0.2401 _refine_ls_goodness_of_fit_ref 0.919 _refine_ls_restrained_S_all 0.919 _refine_ls_shift/su_max 0.001 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Cu1 Cu 0.5000 0.5000 1.0000 0.0769(14) Uani 1 4 d S . . V1 V 0.58724(4) 0.33291(4) 0.18932(3) 0.0456(3) Uani 0.33 1 d P . . W1 W 0.58724(4) 0.33291(4) 0.18932(3) 0.0456(3) Uani 0.67 1 d P . . S1 S 0.6278(6) 0.4696(6) 1.0355(5) 0.099(3) Uiso 0.50 1 d PD . . S2 S 0.6112(8) 0.6373(8) 1.0370(7) 0.146(5) Uiso 0.50 1 d PD . . O1 O 0.6025(4) 0.3975(4) 0.2500 0.067(4) Uani 1 2 d S . . O2 O 0.5287(6) 0.3326(6) 0.1452(5) 0.091(4) Uani 1 1 d . . . O3 O 0.5391(7) 0.2695(4) 0.2500 0.063(4) Uani 1 2 d S . . O4 O 0.6667 0.3333 0.2500 0.054(6) Uani 1 6 d S . . O5 O 0.6023(5) 0.2695(5) 0.1527(5) 0.065(3) Uani 1 1 d . . . O6 O 0.6035(11) 0.5019(12) 1.0000 0.114(8) Uani 1 2 d SD . . O7 O 0.5478(12) 0.6001(10) 1.0000 0.105(7) Uani 1 2 d SD . . C1 C 0.5000 0.5000 0.7842(8) 0.091(9) Uani 1 2 d SD . . C2 C 0.4846(12) 0.5390(10) 0.8169(7) 0.110(9) Uani 1 1 d D . . H2 H 0.4731 0.5659 0.7961 0.133 Uiso 1 1 calc R . . C3 C 0.4852(11) 0.5407(10) 0.8788(7) 0.100(8) Uani 1 1 d D . . H3 H 0.4758 0.5689 0.9000 0.120 Uiso 1 1 calc R . . C4 C 0.602(2) 0.3906(12) 1.0000 0.148(14) Uiso 1 2 d SD . . C5 C 0.7066(13) 0.498(3) 1.0000 0.23(2) Uiso 1 2 d SD . . C6 C 0.604(3) 0.704(2) 1.070(2) 0.18(2) Uiso 0.50 1 d PD . . C7 C 0.682(2) 0.643(4) 1.0000 0.32(4) Uiso 1 2 d SD . . N1 N 0.5000 0.5000 0.9082(7) 0.067(5) Uani 1 2 d SD . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Cu1 0.132(4) 0.105(4) 0.0240(16) 0.000 0.000 0.082(3) V1 0.0489(6) 0.0535(5) 0.0376(5) -0.0012(4) -0.0060(3) 0.0279(4) W1 0.0489(6) 0.0535(5) 0.0376(5) -0.0012(4) -0.0060(3) 0.0279(4) O1 0.073(7) 0.073(7) 0.059(8) -0.004(8) -0.004(8) 0.038(9) O2 0.096(10) 0.095(10) 0.076(8) -0.003(7) -0.012(7) 0.044(8) O3 0.068(10) 0.063(7) 0.059(8) 0.001(8) 0.000 0.034(5) O4 0.063(10) 0.063(10) 0.038(11) 0.000 0.000 0.031(5) O5 0.063(7) 0.060(7) 0.064(7) -0.007(6) -0.011(6) 0.025(5) O6 0.138(19) 0.18(2) 0.094(14) 0.000 0.000 0.129(19) O7 0.17(2) 0.103(15) 0.048(10) 0.000 0.000 0.071(15) C1 0.17(3) 0.15(3) 0.024(10) 0.000 0.000 0.14(2) C2 0.24(3) 0.134(19) 0.046(9) 0.016(11) 0.006(13) 0.16(2) C3 0.20(2) 0.136(19) 0.033(8) 0.007(10) 0.014(11) 0.140(19) N1 0.106(16) 0.092(15) 0.034(8) 0.000 0.000 0.073(13) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Cu1 N1 2.023(15) 13_667 ? Cu1 N1 2.023(15) . ? Cu1 O7 2.06(2) 13_667 ? Cu1 O7 2.06(2) . ? Cu1 O6 2.432(19) 13_667 ? Cu1 O6 2.432(19) . ? V1 O2 1.692(13) . ? V1 O5 1.891(10) . ? V1 O3 1.907(8) . ? V1 O5 1.923(10) 3_665 ? V1 O1 1.927(8) . ? V1 O4 2.3059(8) . ? S1 O6 1.405(17) . ? S1 S1 1.57(2) 16_557 ? S1 C5 1.818(19) . ? S1 C4 1.829(18) . ? S2 O7 1.54(2) . ? S2 S2 1.63(3) 16_557 ? S2 C7 1.82(2) . ? S2 C6 1.83(2) . ? O1 W1 1.927(8) 10_665 ? O1 V1 1.927(8) 10_665 ? O3 W1 1.907(8) 12 ? O3 V1 1.907(8) 12 ? O4 W1 2.3059(8) 11_655 ? O4 V1 2.3059(8) 11_655 ? O4 W1 2.3059(8) 2_655 ? O4 V1 2.3059(8) 2_655 ? O4 W1 2.3059(8) 12 ? O4 V1 2.3059(8) 12 ? O4 W1 2.3059(8) 3_665 ? O4 V1 2.3059(8) 3_665 ? O4 V1 2.3059(8) 10_665 ? O4 W1 2.3059(8) 10_665 ? O5 W1 1.923(10) 2_655 ? O5 V1 1.923(10) 2_655 ? O6 S1 1.405(17) 16_557 ? O7 S2 1.54(2) 16_557 ? C1 C2 1.359(19) 4_665 ? C1 C2 1.359(19) . ? C1 C1 1.51(3) 7_556 ? C2 C3 1.36(2) . ? C3 N1 1.345(17) . ? C4 S1 1.829(18) 16_557 ? C5 S1 1.818(19) 16_557 ? C7 S2 1.821(19) 16_557 ? N1 C3 1.345(17) 4_665 ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag N1 Cu1 N1 180.000(11) 13_667 . ? N1 Cu1 O7 90.000(5) 13_667 13_667 ? N1 Cu1 O7 90.000(9) . 13_667 ? N1 Cu1 O7 90.000(5) 13_667 . ? N1 Cu1 O7 90.000(5) . . ? O7 Cu1 O7 180.000(4) 13_667 . ? N1 Cu1 O6 90.000(4) 13_667 13_667 ? N1 Cu1 O6 90.000(7) . 13_667 ? O7 Cu1 O6 90.6(9) 13_667 13_667 ? O7 Cu1 O6 89.4(9) . 13_667 ? N1 Cu1 O6 90.000(7) 13_667 . ? N1 Cu1 O6 90.000(7) . . ? O7 Cu1 O6 89.4(9) 13_667 . ? O7 Cu1 O6 90.6(9) . . ? O6 Cu1 O6 180.000(4) 13_667 . ? O2 V1 O5 103.4(5) . . ? O2 V1 O3 103.5(6) . . ? O5 V1 O3 87.1(4) . . ? O2 V1 O5 103.9(5) . 3_665 ? O5 V1 O5 87.4(7) . 3_665 ? O3 V1 O5 152.6(5) . 3_665 ? O2 V1 O1 103.2(6) . . ? O5 V1 O1 153.4(5) . . ? O3 V1 O1 86.60(14) . . ? O5 V1 O1 86.4(4) 3_665 . ? O2 V1 O4 179.7(5) . . ? O5 V1 O4 76.9(3) . . ? O3 V1 O4 76.3(4) . . ? O5 V1 O4 76.3(3) 3_665 . ? O1 V1 O4 76.5(4) . . ? O6 S1 S1 56.1(6) . 16_557 ? O6 S1 C5 100.9(17) . . ? S1 S1 C5 64.5(5) 16_557 . ? O6 S1 C4 107.4(14) . . ? S1 S1 C4 64.6(5) 16_557 . ? C5 S1 C4 87(2) . . ? O7 S2 S2 58.0(8) . 16_557 ? O7 S2 C7 114.1(19) . . ? S2 S2 C7 63.4(7) 16_557 . ? O7 S2 C6 102(2) . . ? S2 S2 C6 113.1(19) 16_557 . ? C7 S2 C6 127(4) . . ? W1 O1 V1 0.00(6) 10_665 10_665 ? W1 O1 V1 116.4(8) 10_665 . ? V1 O1 V1 116.4(8) 10_665 . ? W1 O3 V1 0.00(5) 12 12 ? W1 O3 V1 117.5(7) 12 . ? V1 O3 V1 117.5(7) 12 . ? W1 O4 V1 0.00(5) 11_655 11_655 ? W1 O4 W1 89.94(4) 11_655 2_655 ? V1 O4 W1 89.94(4) 11_655 2_655 ? W1 O4 V1 89.94(4) 11_655 2_655 ? V1 O4 V1 89.94(4) 11_655 2_655 ? W1 O4 V1 0.00(4) 2_655 2_655 ? W1 O4 W1 89.76(3) 11_655 12 ? V1 O4 W1 89.76(3) 11_655 12 ? W1 O4 W1 90.54(4) 2_655 12 ? V1 O4 W1 90.54(4) 2_655 12 ? W1 O4 V1 89.76(3) 11_655 12 ? V1 O4 V1 89.76(3) 11_655 12 ? W1 O4 V1 90.54(4) 2_655 12 ? V1 O4 V1 90.54(4) 2_655 12 ? W1 O4 V1 0.00(7) 12 12 ? W1 O4 W1 90.54(4) 11_655 3_665 ? V1 O4 W1 90.54(4) 11_655 3_665 ? W1 O4 W1 89.76(3) 2_655 3_665 ? V1 O4 W1 89.76(3) 2_655 3_665 ? W1 O4 W1 179.57(4) 12 3_665 ? V1 O4 W1 179.57(4) 12 3_665 ? W1 O4 V1 90.54(4) 11_655 3_665 ? V1 O4 V1 90.54(4) 11_655 3_665 ? W1 O4 V1 89.76(3) 2_655 3_665 ? V1 O4 V1 89.76(3) 2_655 3_665 ? W1 O4 V1 179.57(4) 12 3_665 ? V1 O4 V1 179.57(4) 12 3_665 ? W1 O4 V1 0.00(5) 3_665 3_665 ? W1 O4 V1 89.76(3) 11_655 10_665 ? V1 O4 V1 89.76(3) 11_655 10_665 ? W1 O4 V1 179.57(4) 2_655 10_665 ? V1 O4 V1 179.57(4) 2_655 10_665 ? W1 O4 V1 89.76(3) 12 10_665 ? V1 O4 V1 89.76(3) 12 10_665 ? W1 O4 V1 89.94(4) 3_665 10_665 ? V1 O4 V1 89.94(4) 3_665 10_665 ? W1 O4 W1 89.76(3) 11_655 10_665 ? V1 O4 W1 89.76(3) 11_655 10_665 ? W1 O4 W1 179.57(4) 2_655 10_665 ? V1 O4 W1 179.57(4) 2_655 10_665 ? W1 O4 W1 89.76(3) 12 10_665 ? V1 O4 W1 89.76(3) 12 10_665 ? W1 O4 W1 89.94(4) 3_665 10_665 ? V1 O4 W1 89.94(4) 3_665 10_665 ? V1 O4 W1 0.00(4) 10_665 10_665 ? W1 O4 V1 179.57(4) 11_655 . ? V1 O4 V1 179.57(4) 11_655 . ? W1 O4 V1 89.76(3) 2_655 . ? V1 O4 V1 89.76(3) 2_655 . ? W1 O4 V1 89.94(4) 12 . ? V1 O4 V1 89.94(4) 12 . ? W1 O4 V1 89.76(3) 3_665 . ? V1 O4 V1 89.76(3) 3_665 . ? V1 O4 V1 90.54(4) 10_665 . ? W1 O4 V1 90.54(4) 10_665 . ? V1 O5 W1 117.1(6) . 2_655 ? V1 O5 V1 117.1(6) . 2_655 ? W1 O5 V1 0.00(5) 2_655 2_655 ? S1 O6 S1 67.7(13) . 16_557 ? S1 O6 Cu1 132.5(12) . . ? S1 O6 Cu1 132.5(12) 16_557 . ? S2 O7 S2 63.9(16) . 16_557 ? S2 O7 Cu1 118.5(12) . . ? S2 O7 Cu1 118.5(12) 16_557 . ? C2 C1 C2 116.0(18) 4_665 . ? C2 C1 C1 122.0(9) 4_665 7_556 ? C2 C1 C1 122.0(9) . 7_556 ? C1 C2 C3 123.1(16) . . ? N1 C3 C2 117.6(16) . . ? S1 C4 S1 50.7(10) . 16_557 ? S1 C5 S1 51.0(10) 16_557 . ? S2 C7 S2 53.2(13) 16_557 . ? C3 N1 C3 122.5(18) . 4_665 ? C3 N1 Cu1 118.8(9) . . ? C3 N1 Cu1 118.8(9) 4_665 . ? _diffrn_measured_fraction_theta_max 0.978 _diffrn_reflns_theta_full 27.90 _diffrn_measured_fraction_theta_full 0.978 _refine_diff_density_max 2.849 _refine_diff_density_min -1.190 _refine_diff_density_rms 0.267