Electronic Supplementary Information (ESI)

How do substituent groups in the 5-position of 1,3-benzenedicarboxylate affect the construction of supramolecular frameworks? [†]

Dong Liu,^{*a*} Hong-Xi Li,^{*a*} Lei-Lei Liu,^{*a*} He-Ming Wang,^{*a*} Ni-Ya Li,^{*a*} Zhi-Gang Ren,^{*a*} and Jian-Ping Lang^{**a,b*}

^a College of Chemistry, Chemical Engineering and Materials Science, Suzhou University, Suzhou
215123, People's Republic of China
^b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry,

Chinese Academy of Sciences, Shanghai 200032, People's Republic of China

Table of Contents

Fig.	S1	Powder	XRD	patte	rns of	(a)	[Zn(OH ₂)	(5-HO-1	,3-BDC)(1,4-bpe	b)] _n	(1);	(b)
[Zn(H	IBT	C)(1,4-bpe	eb)] _n ((2);	(c) {	[Zn(5-]	NO ₂ -1,3-B	DC)(1,4	-bpeb)]∙	$2(H_2O)_{0.5}$;} _n	(3);	(d)
[Zn(5	-Me	e-1,3-BDC)(1,4-bp	eb)] _n	(4).	Black:	simulated	d from	single	crystal	ana	lysis	and
experimental; Red: as synthesizedS3													
Fig. S	S2 ((a) The O	1–H2W	···N2]	H-bond	ing int	teraction i	n 1 . (b)	The O	H1W…	05 I	H-bon	ding
interaction in 1 . (c) The O6–H6A···O3 H-bonding interactions in 1 .·····S4													
Fig. S	Fig. S3 The O5–H5A…N2 H-bonding interaction in 2 S5												
Fig. S	54	The O7–H	I1W…O	5 and	O8–H2	W…Oe	5 H-bondir	ng intera	ctions in	3	•••••		··S5
Fig. S	5 5	Emission	spectra	of 1–4	in the	solid st	tate at amb	ient temj	perature				S6
Fig. S	56	The TGA	curves f	for 1 (t	olack),	2 (red)	, 3 (blue) a	nd 4 (pu	rple)				S7

Fig. S1 Powder XRD patterns of (a) $[Zn(OH_2)(5-HO-1,3-BDC)(1,4-bpeb)]_n$ (1); (b) $[Zn(HBTC)(1,4-bpeb)]_n$ (2); (c) $\{[Zn(5-NO_2-1,3-BDC)(1,4-bpeb)]\cdot 2(H_2O)_{0.5}\}_n$ (3); (d) $[Zn(5-Me-1,3-BDC)(1,4-bpeb)]_n$ (4). Black: simulated from single crystal analysis and experimental; Red: as synthesized.

Fig. S2 (a) The O1–H2W…N2 H-bonding interaction in **1.** (b) The O1–H1W…O5 H-bonding interaction in **1.** (c) The O6–H6A…O3 H-bonding interaction in **1.**

Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry 2010

Fig. S3 The O5–H5A…N2 H-bonding interaction in **2.**

Fig. S4 The O7–H1W…O5 and O8–H2W…O6 H-bonding interactions in 3.

Fig. S5 Emission spectra of 1–4 in the solid state at ambient temperature.

Fig. S6 The TGA curves for 1 (black), 2 (red), 3 (blue) and 4 (purple).

The thermal properties of **1-4** were described as follows. The thermogravimetric analyses revealed that **1-4** were stable up to 202 °C (**1**), 415°C (**2**), 193°C (**3**), and 400 °C (**4**) (Fig. S5†). For **1** and **3**, the first weight loss of 3.56% from 202 to 258 °C (**1**) or 3.51% from 193 to 265 °C (**3**) corresponds roughly to the loss of one coordinated water molecule per formula unit in **1** (calculated 3.29%) or two one-half of the uncoordinated water molecules per formula unit in **3** (calculated 3.12%). The second weight loss of 81.30% from 258 to 820 °C (**1**) or 82.62% from 265 to 830 °C (**3**) approximately amounts to the loss of all 1,4-bpeb and 5-HO-1,3-BDC or 5-NO₂-1,3-BDC ligands (calculated 81.85% for **1** and 82.77% for **3**). For **2** and **4**, only one weight loss of 1,4-bpeb and H₃BTC or 5-Me-1,3-BDC ligands (calculated 85.41% for **2** and 84.58% for **4**). In all cases, the decomposition residue species, according to X-ray fluorescence analysis, was assumed to be ZnO (15.14% *vs* calculated 14.86% (**1**), 14.62% *vs* calculated 14.59% (**2**), 13.87% *vs* calculated 14.11% (**3**), and 15.31% *vs* calculated 15.42% (**4**)).