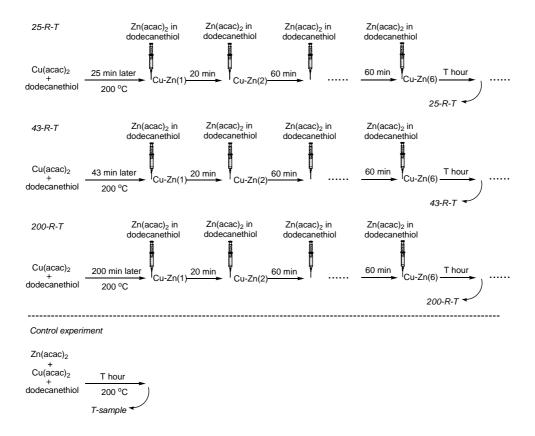
Electronic Supplementary imformation

Synthesis and Self-assembly of Cu_{1,94}S-ZnS Heterostructured Nanorods


Luoxin Yi, Aiwei Tang, Mu Niu, Wei Han, Yanbing Hou, and Mingyuan Gao*

be Key Laboratory of Luminescence and Optical Information (Ministry of Education), Institute of Optoelectronic Technology, Beijing JiaoTong University, 100044 Beijing

Synthetic procedures for $Cu_{1.94}S$ -ZnS nanorods. Scheme S1 shows the detailed synthetic procedures for F-R-T series of $Cu_{1.94}S$ -ZnS nanorods prepared by introducing $Zn(acac)_2$ -dodecanethiol solution into reaction systems containing differently sized $Cu_{1.94}S$ nanocrystals, as well as the control experiment performed by simultaneously pyrolyzing $Cu(acac)_2$ and $Zn(acac)_2$ in dodecanethiol.

Identification of the crystalline phases by SAED. The crystalline phase of copper sulfide and copper zinc sulfide nanocrystals were determined by selected SAED apart from X-ray diffraction method. Detailed results are provided in Figure S1.

Atomic arrangements crossing the $Cu_{1.94}S/ZnS$ interface. According to the high resolution TEM results shown in Figures 1f-g, a schematic model for illustrating the atomic arrangements crossing the $Cu_{1.94}S-ZnS$ interface is given in Figure S2.

Scheme S1. Synthetic procedures for 25-R-T, 43-R-T, 200-R-T, and control experiment, respectively.

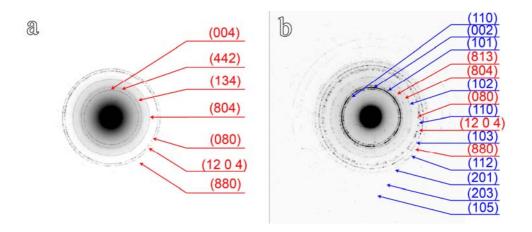


Figure S1. SAED patterns of copper sulfide nanoparticles obtained after pyrolyzing Cu(acac)₂ in dodecanethiol at 200 °C for 25 min (a), and sample 25-1-17 (b), together with the identification of diffraction rings labeled with the Miller indices of monoclinic Cu_{1.94}S (red, JCPDS No.23-0959) and wurtzite ZnS (blue, JCPDS No. 79-2204).

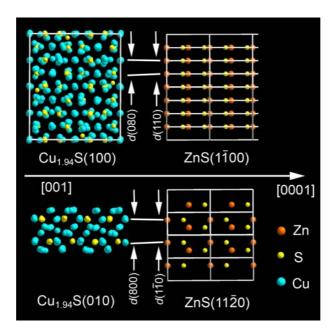


Figure S2. Schematic model for the atomic arrangements at the Cu_{1.94}S-ZnS interface.