Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry 2010

## **Electronic supplementary information (ESI)**

# Dimensionality of coordination polymers decided by the type of hybridization of the central carbon atom of the solvent molecule that coordinates to an alkali metal cation: from discrete to 3D networks based on a gold(III) bis(dithiolene) complex †

Ramababu Bolligarla and Samar K. Das\*

School of Chemistry, University of Hyderabad, Central University Post, Gachibowli,

Hyderabad-500 046, India.

*Tel:*+91(40)23011007;

E-mail: skdsc@uohyd.ernet.in

#### **A. Experimental section**



Scheme S1 Synthetic route for compounds 1-4.

**Materials:** The material HAuCl<sub>4</sub>.3H<sub>2</sub>O was purchased from Finar Reagents. The solvents were distilled and dried by standard procedures. The H<sub>2</sub>btdt ligand was prepared according to literature procedure.<sup>1</sup>

#### Reference

1 J. L. Brusso, O. P. Clements, R. C. Haddon, M. E. Itkis, A. A. Leitch, R. T. Oakley, R. W. Reed and J. F. Richardson, *J. Am. Chem. Soc.*, 2004, **126**, 8256.

**Instrumental methods:** FLASH EA series 1112 CHNS analyzer performed elemental analyses. Infrared spectra were recorded as KBr pellets on a JASCO–5300 FT–IR spectrophotometer at 298K. Electronic absorption spectra of solutions were recorded on a Cary 100 Bio UV-Vis spectrophotometer. Diffused reflectance spectra of solid compounds were recorded on a UV-3600 Shimadzu UV-Vis-NIR spectrophotometer.

#### **B.** Spectroscopy





**Fig. S1** (a) The diffuse reflectance spectra of compounds **1-4** and brown solid compound. (b) Absorption spectra of compounds **1-4** from their corresponding solvents.

#### 2. IR spectroscopy

IR spectrum compound **3** and **4** show characteristic bands at 1657 cm<sup>-1</sup>(C=O stretching frequency) and 2255 cm<sup>-1</sup> (C=N stretching frequency) respectively.



Fig. S2 IR spectrum of brown solid compound.



Fig. S3 IR spectrum of compound  $[Na(H_2O)_4][Au(btdt)_2]$  (1).



**Fig. S4** IR spectrum of compound  $\{[Na(MeOH)_4][Au(btdt)_2]\}_n$  (2).



Fig. S5 IR spectrum of compound  $\{[Na(DMF)_2][Au(btdt)_2]\}_n$  (3).



Fig. S6 IR spectrum of compound  $\{[Na(CH_3CN)_2][Au(btdt)_2]\}_n$  (4).

### C. X-ray Crystallography

Crystal data for compound **1** was collected on Oxford XCalibur, Gemini diffractometer equipped with EOS CCD detector at 298 K. Monochromatic Mo K $\alpha$  radiation (0.71073 Å) was used for the measurements. Absorption corrections using multi  $\psi$ -scans were applied. Structure was solved using SHELXS-97, and refined by full-matrix least squares against F<sup>2</sup> using SHELXL-97 software [36]. Non-hydrogen atoms were refined with anisotropic thermal parameters. All hydrogen atoms were geometrically fixed and allowed to refine using a riding model. Selected bond lengths and angles for compound **1** are listed in Table S1.

Crystal data for compounds 2-4 were measured at 100(2) K on a Bruker SMART APEX CCD area detector system [ $\lambda$ (Mo-K $\alpha$ ) = 0.71073 Å], graphite monochromator, 2400 frames were recorded with an  $\omega$  scan width of 0.3°, each for 8 s, crystal-detector distance 60 mm, collimator 0.5 mm. Data reduction by SAINTPLUS (Software for the CCD Detector System,

Bruker Analytical X-Ray Systems Inc., Madison, WI, 1998), structure solution using SHELXS-97 (G. M. Sheldrick, Program for structure solution, University of Göttingen, Germany 1997) and refined using SHELXL-97 (G. M. Sheldrick, Program for crystal structure analysis, University of Göttingen, Germany 1997). All non-hydrogen atoms were refined anisotropically. The hydrogen atoms were included in the structure factor calculation by using a riding model. Selected bond lengths and angles for the compounds **2-4** are listed in Table S2, Table S3 and Table S4, respectively.



Scheme S2 The observed coordination modes of  $Na^+$  ion with  $[Au(btdt)_2]^-$  in the compounds 2–4.

| Au(1)-S(2)      | 2.3090(15) | C(9)-N(4)         | 1.359(7)  |
|-----------------|------------|-------------------|-----------|
| Au(1)- $S(4)$   | 2.3100(14) | C(9)-C(10)        | 1.433(8)  |
| Au(1)-S(3)      | 2.3174(15) | C(10)-N(3)        | 1.363(6)  |
| Au(1)-S(1)      | 2.3176(15) | C(10)-C(11)       | 1.399(8)  |
| C(1)-C(2)       | 1.369(7)   | C(11)-C(12)       | 1.382(7)  |
| C(1)-C(6)       | 1.434(7)   | C(12)-S(3)        | 1.761(5)  |
| C(1)-S(2)       | 1.765(5)   | N(1)-S(5)         | 1.623(5)  |
| C(2)-C(3)       | 1.421(7)   | N(2)-S(5)         | 1.616(5)  |
| C(3)-N(1)       | 1.345(6)   | N(3)-S(6)         | 1.628(5)  |
| C(3)-C(4)       | 1.403(7)   | N(4)-S(6)         | 1.632(5)  |
| C(4)-N(2)       | 1.357(6)   | Na(1)-O(1)        | 2.282(5)  |
| C(4)-C(5)       | 1.438(7)   | Na(1)-O(3)        | 2.335(6)  |
| C(5)-C(6)       | 1.379(7)   | Na(1)-O(2)        | 2.384(6)  |
| C(6)-S(1)       | 1.761(5)   | Na(1)-O(4)        | 2.415(5)  |
| C(7)-C(8)       | 1.367(7)   | Na(1)-O(4)#1      | 2.422(5)  |
| C(7)-C(12)      | 1.426(7)   | Na(1)-Na(1)#1     | 3.282(5)  |
| C(7)-S(4)       | 1.765(5)   | O(4)-Na(1)#1      | 2.422(5)  |
| C(8)-C(9)       | 1.421(7)   |                   |           |
| S(2)-Au(1)-S(4) | 177.85(6)  | N(4)-C(9)-C(8)    | 125.8(5)  |
| S(2)-Au(1)-S(3) | 90.17(5)   | N(4)-C(9)-C(10)   | 114.2(5)  |
| S(4)-Au(1)-S(3) | 89.62(5)   | C(8)-C(9)-C(10)   | 119.9(5)  |
| S(2)-Au(1)-S(1) | 89.60(5)   | N(3)-C(10)-C(11)  | 126.5(5)  |
| S(4)-Au(1)-S(1) | 90.60(5)   | N(3)-C(10)-C(9)   | 112.9(5)  |
| S(3)-Au(1)-S(1) | 179.57(6)  | C(11)-C(10)-C(9)  | 120.6(5)  |
| C(2)-C(1)-C(6)  | 121.1(5)   | C(12)-C(11)-C(10) | 118.4(5)  |
| C(2)-C(1)-S(2)  | 117.7(4)   | C(11)-C(12)-C(7)  | 121.2(5)  |
| C(6)-C(1)-S(2)  | 121.2(4)   | C(11)-C(12)-S(3)  | 117.4(4)  |
| C(1)-C(2)-C(3)  | 117.9(5)   | C(7)-C(12)-S(3)   | 121.4(4)  |
| N(1)-C(3)-C(4)  | 113.4(5)   | C(3)-N(1)-S(5)    | 106.7(4)  |
| N(1)-C(3)-C(2)  | 125.6(5)   | C(4)-N(2)-S(5)    | 106.2(4)  |
| C(4)-C(3)-C(2)  | 121.1(5)   | C(10)-N(3)-S(6)   | 106.1(4)  |
| N(2)-C(4)-C(3)  | 113.7(5)   | C(9)-N(4)-S(6)    | 105.4(4)  |
| N(2)-C(4)-C(5)  | 125.2(5)   | O(1)-Na(1)-O(3)   | 90.9(2)   |
| C(3)-C(4)-C(5)  | 121.1(5)   | O(1)-Na(1)-O(2)   | 96.0(2)   |
| C(6)-C(5)-C(4)  | 116.4(5)   | O(3)-Na(1)-O(2)   | 162.0(2)  |
| C(5)-C(6)-C(1)  | 122.3(5)   | O(1)-Na(1)-O(4)   | 168.0(2)  |
| C(5)-C(6)-S(1)  | 116.5(4)   | O(3)-Na(1)-O(4)   | 88.2(2)   |
| C(1)-C(6)-S(1)  | 121.2(4)   | O(2)-Na(1)-O(4)   | 81.64(19) |
| C(8)-C(7)-C(12) | 121.4(5)   | O(1)-Na(1)-O(4)#1 | 97.20(18) |
| C(8)-C(7)-S(4)  | 117.3(4)   | O(3)-Na(1)-O(4)#1 | 105.4(2)  |
| C(12)-C(7)-S(4) | 121.3(4)   | O(2)-Na(1)-O(4)#1 | 90.31(19) |
| C(7)-C(8)-C(9)  | 118.4(5)   | O(4)-Na(1)-O(4)#1 | 94.56(17) |

# **Table S1** Selected bond lengths [Å] and angles [°] for compound 1.

Supplementary Material (ESI) for CrystEngComm This journal is  $\ensuremath{\mathbb{O}}$  The Royal Society of Chemistry 2010

| O(1)-Na(1)-Na(1)#1   | 144.3(2)  | C(6)-S(1)-Au(1)  | 103.91(18)                   |
|----------------------|-----------|------------------|------------------------------|
| O(3)-Na(1)-Na(1)#1   | 99.9(2)   | C(1)-S(2)-Au(1)  | 103.97(18)                   |
| O(2)-Na(1)-Na(1)#1   | 84.09(16) | C(12)-S(3)-Au(1) | 103.65(18)                   |
| O(4)-Na(1)-Na(1)#1   | 47.37(13) | C(7)-S(4)-Au(1)  | 103.77(18) 100.0(2) 101.3(2) |
| O(4)#1-Na(1)-Na(1)#1 | 47.19(13) | N(2)-S(5)-N(1)   |                              |
| Na(1)-O(4)-Na(1)#1   | 85.44(17) | N(3)-S(6)-N(4)   |                              |

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+1,-z+1

| Au(1)-S(2)#1        | 2.3085(6)  | C(1)-C(2)           | 1.441(3)   |
|---------------------|------------|---------------------|------------|
| Au(1)-S(2)          | 2.3085(6)  | C(6)-C(5)           | 1.417(3)   |
| Au(1)-S(1)#1        | 2.3085(6)  | C(5)-C(4)           | 1.430(3)   |
| Au(1)-S(1)          | 2.3085(6)  | C(4)-C(3)           | 1.417(3)   |
| S(3)-N(1)           | 1.621(2)   | C(3)-C(2)           | 1.376(3)   |
| S(3)-N(2)           | 1.627(2)   | O(1)-C(7)           | 1.423(3)   |
| S(1)-C(1)           | 1.761(2)   | O(1)-Na(1)          | 2.3479(18) |
| S(2)-C(2)           | 1.767(2)   | O(2)-C(8)           | 1.427(3)   |
| N(1)-C(5)           | 1.346(3)   | O(2)-Na(1)          | 2.3511(19) |
| N(1)-Na(1)          | 2.518(2)   | Na(1)-O(1)#2        | 2.3479(18) |
| N(2)-C(4)           | 1.347(3)   | Na(1)-O(2)#2        | 2.3511(19) |
| C(1)-C(6)           | 1.374(3)   | Na(1)-N(1)#2        | 2.518(2)   |
|                     |            |                     |            |
| S(2)#1-Au(1)-S(2)   | 180.0      | N(1)-C(5)-C(4)      | 113.4(2)   |
| S(2)#1-Au(1)-S(1)#1 | 90.01(2)   | C(6)-C(5)-C(4)      | 120.4(2)   |
| S(2)-Au(1)-S(1)#1   | 89.99(2)   | N(2)-C(4)-C(3)      | 126.4(2)   |
| S(2)#1-Au(1)-S(1)   | 89.99(2)   | N(2)-C(4)-C(5)      | 113.1(2)   |
| S(2)-Au(1)-S(1)     | 90.01(2)   | C(3)-C(4)-C(5)      | 120.5(2)   |
| S(1)#1-Au(1)-S(1)   | 179.999(1) | C(2)-C(3)-C(4)      | 118.2(2)   |
| N(1)-S(3)-N(2)      | 100.29(11) | C(3)-C(2)-C(1)      | 121.3(2)   |
| C(1)-S(1)-Au(1)     | 103.82(8)  | C(3)-C(2)-S(2)      | 117.75(18) |
| C(2)-S(2)-Au(1)     | 103.88(8)  | C(1)-C(2)-S(2)      | 120.89(17) |
| C(5)-N(1)-S(3)      | 106.59(16) | C(7)-O(1)-Na(1)     | 140.13(17) |
| C(5)-N(1)-Na(1)     | 127.01(15) | C(8)-O(2)-Na(1)     | 122.17(15) |
| S(3)-N(1)-Na(1)     | 114.02(10) | O(1)-Na(1)-O(1)#2   | 180.00(10) |
| C(4)-N(2)-S(3)      | 106.59(16) | O(1)-Na(1)-O(2)#2   | 98.25(7)   |
| C(6)-C(1)-C(2)      | 121.1(2)   | O(1)#2-Na(1)-O(2)#2 | 81.75(7)   |
| C(6)-C(1)-S(1)      | 117.48(18) | O(1)-Na(1)-O(2)     | 81.75(7)   |
| C(2)-C(1)-S(1)      | 121.39(17) | O(1)#2-Na(1)-O(2)   | 98.25(7)   |
| C(1)-C(6)-C(5)      | 118.4(2)   | O(2)#2-Na(1)-O(2)   | 180.0      |
| N(1)-C(5)-C(6)      | 126.1(2)   | O(1)-Na(1)-N(1)     | 95.58(6)   |
|                     |            |                     |            |

**Table S2** Selected bond lengths [Å] and angles [°] for compound 2.

Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry 2010

| O(1)#2-Na(1)-N(1) | 84.42(6) | O(1)#2-Na(1)-N(1)#2 | 95.59(6) |
|-------------------|----------|---------------------|----------|
| O(2)#2-Na(1)-N(1) | 85.82(7) | O(2)#2-Na(1)-N(1)#2 | 94.18(7) |
| O(2)-Na(1)-N(1)   | 94.18(7) | O(2)-Na(1)-N(1)#2   | 85.82(7) |
| O(1)-Na(1)-N(1)#2 | 84.41(6) | N(1)-Na(1)-N(1)#2   | 180.0    |

Symmetry transformations used to generate equivalent atoms: #1 -x+2,-y,-z+1 #2 -x+2,-y+2,-z

1.404(4)Au(1)-S(1)#12.3051(7)C(5)-C(6)Au(1)-S(1)2.3051(7)C(7)-O(1)1.232(4) Au(1)-S(2)2.3107(7)C(7)-N(3)1.320(4) Au(1)-S(2)#1 2.3107(7)C(8)-N(3)1.460(4) 1.368(4)C(9)-N(3)1.449(4)C(1)-C(6)C(1)-C(2)1.437(4) N(1)-S(3)1.615(2)C(1)-S(1)1.765(3) N(2)-S(3)1.622(2)C(2)-C(3)1.377(4)N(2)-Na(1)2.488(2)C(2)-S(2)1.761(3) Na(1)-O(1)#2 2.316(2) C(3)-C(4)1.411(4)Na(1)-O(1)2.316(2)Na(1)-N(2)#2 2.488(2)C(4)-N(2)1.349(3)C(4)-C(5)1.434(4) Na(1)-S(1)#33.2020(8) C(5)-N(1)1.344(4)179.999(2) S(1)#1-Au(1)-S(1) C(1)-C(6)-C(5)118.5(2)S(1)#1-Au(1)-S(2) 89.94(2)O(1)-C(7)-N(3)125.8(3) S(1)-Au(1)-S(2)90.06(2) C(5)-N(1)-S(3)106.28(19) S(1)#1-Au(1)-S(2)#1 90.06(2) C(4)-N(2)-S(3)106.23(18) S(1)-Au(1)-S(2)#1 89.94(2) C(4)-N(2)-Na(1)137.23(18) S(2)-Au(1)-S(2)#1 180.0 S(3)-N(2)-Na(1)115.70(12) C(7)-N(3)-C(9)121.5(2)C(6)-C(1)-C(2)121.5(2) C(6)-C(1)-S(1)117.2(2) C(7)-N(3)-C(8)121.3(2)C(2)-C(1)-S(1)121.3(2) C(9)-N(3)-C(8)117.2(2)120.9(2) O(1)#2-Na(1)-O(1) C(3)-C(2)-C(1)180.0 C(3)-C(2)-S(2)118.1(2)O(1)#2-Na(1)-N(2)#2 83.55(7) C(1)-C(2)-S(2)121.05(19) O(1)-Na(1)-N(2)#296.45(7) O(1)#2-Na(1)-N(2) C(2)-C(3)-C(4)118.3(2)96.45(7) 126.6(2) O(1)-Na(1)-N(2)83.55(7) N(2)-C(4)-C(3)N(2)-C(4)-C(5)112.9(2) N(2)#2-Na(1)-N(2) 180.00(8)C(3)-C(4)-C(5)120.4(2)O(1)#2-Na(1)-S(1)#3 87.99(6) N(1)-C(5)-C(6)126.1(2) O(1)-Na(1)-S(1)#392.01(6) N(1)-C(5)-C(4)113.5(2)N(2)#2-Na(1)-S(1)#3 92.31(5) N(2)-Na(1)-S(1)#3 C(6)-C(5)-C(4)120.4(2)87.69(5)

**Table S3** Selected bond lengths [Å] and angles [°] for compound **3**.

Supplementary Material (ESI) for CrystEngComm This journal is  $\ensuremath{\mathbb{O}}$  The Royal Society of Chemistry 2010

| O(1)#2-Na(1)-S(1)#4 | 92.01(6)    | C(1)-S(1)-Au(1)    | 103.61(9)  |
|---------------------|-------------|--------------------|------------|
| O(1)-Na(1)-S(1)#4   | 87.99(6)    | C(1)-S(1)-Na(1)#5  | 91.78(9)   |
| N(2)#2-Na(1)-S(1)#4 | 87.69(5)    | Au(1)-S(1)-Na(1)#5 | 112.42(3)  |
| N(2)-Na(1)-S(1)#4   | 92.31(5)    | C(2)-S(2)-Au(1)    | 103.75(9)  |
| S(1)#3-Na(1)-S(1)#4 | 179.999(12) | N(1)-S(3)-N(2)     | 101.00(12) |
| C(7)-O(1)-Na(1)     | 143.47(19)  |                    |            |

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+2,-z+2 #2 -x+1,-y,-z+1 #3 -x+1,-y+1,-z+1 #4 x,y-1,z #5 x,y+1,z

| Au(1)-S(2)#1        | 2.3033(9)  | C(3)-N(1)           | 1.349(4)   |
|---------------------|------------|---------------------|------------|
| Au(1)-S(2)          | 2.3033(9)  | S(3)-N(2)           | 1.617(3)   |
| Au(1)-S(1)#1        | 2.3052(9)  | S(3)-N(1)           | 1.623(3)   |
| Au(1)-S(1)          | 2.3052(9)  | N(2)-Na(1)#2        | 2.456(3)   |
| S(1)-C(6)           | 1.761(3)   | N(1)-Na(1)          | 2.542(3)   |
| C(1)-C(2)           | 1.380(5)   | Na(1)-N(3)          | 2.455(3)   |
| C(1)-C(6)           | 1.437(4)   | Na(1)-N(3)#3        | 2.455(3)   |
| C(1)-S(2)           | 1.754(3)   | Na(1)-N(2)#4        | 2.456(3)   |
| C(2)-C(3)           | 1.407(5)   | Na(1)-N(2)#5        | 2.456(3)   |
| C(6)-C(5)           | 1.362(4)   | Na(1)-N(1)#3        | 2.542(3)   |
| C(4)-N(2)           | 1.346(4)   | Na(1)-S(3)#3        | 3.3616(8)  |
| C(4)-C(5)           | 1.411(4)   | N(3)-C(7)           | 1.138(4)   |
| C(4)-C(3)           | 1.431(4)   | C(7)-C(8)           | 1.453(5)   |
|                     |            |                     |            |
| S(2)#1-Au(1)-S(2)   | 180.0      | C(5)-C(4)-C(3)      | 120.6(3)   |
| S(2)#1-Au(1)-S(1)#1 | 90.03(3)   | C(6)-C(5)-C(4)      | 118.7(3)   |
| S(2)-Au(1)-S(1)#1   | 89.97(3)   | N(1)-C(3)-C(2)      | 127.1(3)   |
| S(2)#1-Au(1)-S(1)   | 89.97(3)   | N(1)-C(3)-C(4)      | 113.2(3)   |
| S(2)-Au(1)-S(1)     | 90.03(3)   | C(2)-C(3)-C(4)      | 119.7(3)   |
| S(1)#1-Au(1)-S(1)   | 180.0      | N(2)-S(3)-N(1)      | 100.46(14) |
| C(6)-S(1)-Au(1)     | 103.42(11) | C(1)-S(2)-Au(1)     | 103.49(11) |
| C(2)-C(1)-C(6)      | 120.7(3)   | C(4)-N(2)-S(3)      | 106.8(2)   |
| C(2)-C(1)-S(2)      | 118.0(2)   | C(4)-N(2)-Na(1)#2   | 129.5(2)   |
| C(6)-C(1)-S(2)      | 121.3(2)   | S(3)-N(2)-Na(1)#2   | 121.63(14) |
| C(1)-C(2)-C(3)      | 118.9(3)   | C(3)-N(1)-S(3)      | 106.4(2)   |
| C(5)-C(6)-C(1)      | 121.2(3)   | C(3)-N(1)-Na(1)     | 132.4(2)   |
| C(5)-C(6)-S(1)      | 117.7(2)   | S(3)-N(1)-Na(1)     | 105.46(13) |
| C(1)-C(6)-S(1)      | 121.1(2)   | N(3)-Na(1)-N(3)#3   | 180.0      |
| N(2)-C(4)-C(5)      | 126.3(3)   | N(3)-Na(1)-N(2)#4   | 95.90(10)  |
| N(2)-C(4)-C(3)      | 113.1(3)   | N(3)#3-Na(1)-N(2)#4 | 84.10(10)  |

 Table S4 Selected bond lengths [Å] and angles [°] for compound 4.

#### Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry 2010

| N(3)-Na(1)-N(2)#5   | 84.10(10) | N(2)#5-Na(1)-N(1)   | 92.79(9)  |
|---------------------|-----------|---------------------|-----------|
| N(3)#3-Na(1)-N(2)#5 | 95.90(10) | N(1)#3-Na(1)-N(1)   | 180.0     |
| N(2)#4-Na(1)-N(2)#5 | 180.0     | N(3)-Na(1)-S(3)#3   | 67.55(7)  |
| N(3)-Na(1)-N(1)#3   | 88.37(10) | N(3)#3-Na(1)-S(3)#3 | 112.45(7) |
| N(3)#3-Na(1)-N(1)#3 | 91.63(10) | N(2)#4-Na(1)-S(3)#3 | 112.10(7) |
| N(2)#4-Na(1)-N(1)#3 | 92.80(9)  | N(2)#5-Na(1)-S(3)#3 | 67.90(7)  |
| N(2)#5-Na(1)-N(1)#3 | 87.20(9)  | N(1)#3-Na(1)-S(3)#3 | 27.74(6)  |
| N(3)-Na(1)-N(1)     | 91.63(10) | N(1)-Na(1)-S(3)#3   | 152.26(6) |
| N(3)#3-Na(1)-N(1)   | 88.37(10) | C(7)-N(3)-Na(1)     | 152.5(3)  |
| N(2)#4-Na(1)-N(1)   | 87.20(9)  | N(3)-C(7)-C(8)      | 177.5(4)  |
|                     |           |                     |           |

 Symmetry transformations used to generate equivalent atoms:

 #1 -x+1,-y+1,-z+2
 #2 -x+2,y+1/2,-z+3/2

 #3 -x+2,-y+1,-z+1
 #4 x,-y+3/2,z-1/2

#5 -x+2,y-1/2,-z+3/2