Electronic supplementary information (ESI)

Insights into self-assembling nanoporous peptide and in situ reducing agent

Poulami Jana, Sibaprasad Maity and Debasish Haldar*

Department of Chemical Sciences, Indian Institute of Science Education and Research -Kolkata,

Mohanpur, West Bengal- 741252, India.

E-mail: deba_h76@yahoo.com, deba_h76@iiserkol.ac.in

Table of contents

ESI Figure S1	2	Figure S8	9
ESI Figure S2	3	Figure S9	10
ESI Figure S3	4	Figure S10	11
ESI Figure S4	5	Figure S11	12
ESI Figure S5	6	Figure S12	13
Figure S6	7	Figure S13	14
Figure S7	8	Figure S14	15

ESI Figure S1: Schematic presentation of synthesis of tripeptide 1. Reagents and conditions: (a) DMF, H-Aib-OMe, DCC, HOBt, 0°C, 90% yield; (b) MeOH, 2M NaOH, 85% yield; (c) DMF, H-Val-OMe, DCC, HOBt, 0°C, 80% yield.

ESI Figure S2: FTIR spectra at the region 1500 - 4000 cm⁻¹ of tripeptide 1 in the solid state.

 N_2 gas adsorption studies. Nitrogen adsorption/desorption isotherms were obtained using a Quantachrome Autosorb Automated Gas Sorption System at 77 K. The peptide 1 crystals were degassed at 150°C for 4 h. From the N₂ gas adsorption at low *P*/*P*₀, the pore size distribution of the sample was calculated using the NLDFT(Non Local Density Functional Theory) method. The BET surface area (8.69 m²g⁻¹) was calculated from the Brunauer-Emmett-Teller (BET) equation. The heating at 150°C (for degassing) may have some effect on the self-assembly and pore size of the mesoporous peptide 1.

Surface area	8.68 m ² /gm
Pore volume	0.0193 cc/gm
Pore size(diameter)	6.04 nm
Nature	mesoporous
Isotherm type	1
Max Amount of gas Ads.	13.99 cc/gm

ESI Figure S3: The N_2 gas adsorption /desorption isotherms (77K) of tri-peptide 1 is close to the type 1 adsorption isotherm typical for a nanoporous material.

ESI Figure S4: The pore size distribution curve of tri-peptide 1 exhibits a peak at 6.04 nm indicating the mesoporous architecture.

ESI Figure S5. UV-VIS spectra of (a) tripeptide 1 and (b) surface Plasmon band around 548 nm of gold nanoparticle.

Figure S6. The formation of GNP with different size and shape from a tripeptide Boc-Phe-Phe-Tyr-OMe, which does not exhibits nanoporous structure.

Figure S7. ¹H NMR (500 MHz, CDCl3) spectra of Boc-Tyr(1)-OH.

Figure S8. ¹³C NMR (125 MHz, CDCl3) spectra of Boc-Tyr(1)-OH.

Figure S9. ¹H NMR (500 MHz, CDCl3) spectra of Boc-Tyr(1)-Aib(2)-OMe.

Figure S10. ¹³C NMR (125 MHz, CDCl3) spectra of Boc-Tyr(1)-Aib(2)-OMe.

Figure S11. ¹H NMR (500 MHz, DMSO-*d*₆) spectra of Boc-Tyr(1)-Aib(2)-OH.

Figure S12. ¹³C NMR (125 MHz, DMSO-*d*₆) spectra of Boc-Tyr(1)-Aib(2)-OH.

Figure S13. ¹H NMR (500 MHz, DMSO-*d*₆) spectra of Boc-Tyr(1)-Aib(2)-Val(3)-OMe.

Figure S14. ¹³C NMR (125 MHz, DMSO-*d*₆) spectra of Boc-Tyr(1)-Aib(2)-Val(3)-OMe.