Electronic Supplementary Information

Fine Structural and Morphological Control of Rare Earth Fluorides REF₃ (RE = La-Lu, Y) Nano/Microcrystals: Microwave-Assisted Ionic Liquid Synthesis, Magnetic and Luminescent Properties

Chunxia Li[†], Piaoping Yang^{†, ‡}, Zhenhe Xu [†], Guogang Li[†], Dongmei Yang [†], Chong Peng[†] and Jun Lin^{*†}

[†] State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 13002, P. R. China
[‡] College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China

Fig. S1 XRD pattern of as-obtained EuF₃ and its strand card (JCPDS 33-0542).

Fig. S2 Nitrogen adsorption/desorption isotherm and corresponding pore size distribution of LaF_3 sample.

Fig. S3 XRD patterns of the as-prepared products using NaBF₄ (a) and NH₄F (b) as F source (* denoted as impurity). The standard data of NH₄Y₂F₇ (JCPDS 43-0847) and YF₃ (JCPDS 32-1431) were given as references.

Fig. S4 SEM images of the as-prepared products using $NaBF_4$ (A) and NH_4F (B) as F source.

Fig. S5 SEM images of EuF_3 obtained under microwave irradiation for different time intervals of (A) 1 min, (B) 10 min, (C) 20 min.

Fig. S6 Schematic energy level diagram showing luminescence mechanism in the GdF_3 :Ce³⁺/Ln³⁺. A represents the activator ion (Tb, Eu, or Dy).

Fig. S7 Relative emission intensity of Gd^{3+} versus Gd^{3+} concentration (x) in $Y_{1-x}Gd_xCe_{0.01}Dy_{0.01}F_3$.