Towards polymorphism control in coordination networks and metallo-organic salts

Christopher J. Adams, Amy L. Gillon, Matteo Lusi and A. Guy Orpen*

School of Chemistry, University of Bristol, Bristol BS8 1TS

Supplementary information

Pages 2 – 7: Powder XRD patterns

Page 8: TGA of 3

Pages 9 - 10: SEM images and EDAX maps of $\mathbf{3}_{0.5}$ and $\mathbf{4}_{0.5}$

Page 11: Details of the crystal structures of 3_x with x = 0.95, 0.93 and 0.86

Figure S1: PXRD patterns for $[4,4'-H_2bipy][ZnCl_4]$ **3**: calculated from the crystal structure (black); solution synthesis (blue, Scheme route (vi)); grinding synthesis (green, Scheme route (vii)); HCl absorption (purple, Scheme route (viii)).

Figure S2: Comparison of the PXRD patterns calculated for the various polymorphs of **4** with those measured from the product obtained by various methods: 1) calculated for **4a** (black, *C2/c* phase); 2) solution synthesis (blue, Scheme route (ii)); 3) grinding (green, Scheme route (v)); 4) thermal elimination (red, Scheme route (i)); 5) mechanochemical elimination with KOH (light blue, Scheme route (iii)); 6) calculated for **4b** (yellow, *Pnma* phase); 7) By reaction of $[4,4'-H_2bipy]Cl_2$ with basic zinc carbonate (violet, Scheme route (iv)); 8) calculated for **4c** (brown, *Pban* phase).

Figure S3: Comparison of PXRD patterns measured for different samples: mixing equivalent amounts of 2 and 4 obtained from solution (pink), containing all three phases; solution synthesis of $4_{0.5}$ (blue), containing phases 4b and 4c; grinding synthesis of $4_{0.5}$ (green), containing just 4c.

Figure S4: Comparison of PXRD patterns measured for 4_x obtained by grinding 4,4'-bipy with cobalt and zinc chloride in a 1:3 ratio $4_{0.75}$ (blue), in a 1:1 ratio $4_{0.5}$ (green) and a 3:1 ratio $4_{0.25}$ (pink). Peaks due to the tetrahedral *Pnma* polymorph **4b** are indicated by arrows, and others are due to the octahedral *Pban* polymorph **4c**.

Figure S5: PXRD patterns for samples of [{(4,4'-bipy)Co_{1-x}Zn_xCl₂]_n] $\mathbf{4}_x$ obtained by thermal elimination from [4,4'-H₂bipy][Co_{1-x}Zn_xCl₄] $\mathbf{3}_x$: Co / Zn in 1:3 ratio $\mathbf{4}_{0.75}$ (blue); Co / Zn in 1:1 ratio $\mathbf{4}_{0.5}$ (green); Co / Zn in 3:1 ratio $\mathbf{4}_{0.25}$ (pink).

Figure S6: PXRD patterns for samples of [{(4,4'-bipy)Co_{1-x}Zn_xCl₂}_n] $\mathbf{4}_x$ obtained by mechanochemical elimination from [4,4'-H₂bipy][Co_{1-x}Zn_xCl₄] $\mathbf{3}_x$: Co / Zn in 1:3 ratio, $\mathbf{4}_{0.75}$ (blue); Co / Zn in 1:1 ratio, $\mathbf{4}_{0.5}$ (green); Co / Zn in 3:1 ratio, $\mathbf{4}_{0.25}$ (pink).

Figure S7: TGA of $[4,4'-H_2bipy][ZnCl_4]$ (3). Size 3.769 mg Ramp 10.00 °C/min to 600.00 °C Balance Gas: Nitrogen 40.0 ml/min Sample Gas: Nitrogen 60.0 ml/min.

Figure S8: SEM images and Co $K_{\alpha 1}$ and Zn $K_{\alpha 1}$ EDAX map scans of [{(4,4'-bipy)Co_{0.5}Zn_{0.5}Cl₂}_n] (**4**_{0.5}) obtained by mixing 4,4'-bipy, CoCl₂ and ZnCl₂ in a 2:1:1 ratio in a solution of ethanol.

Figure S9: SEM images and Co $K_{\alpha 1}$ and Zn $K_{\alpha 1}$ EDAX map scans of [{(4,4'-bipy)Co_{0.5}Zn_{0.5}Cl₂}_n] (**4**_{0.5}) obtained by manually grinding 4,4'-bipy, CoCl₂ and ZnCl₂ in a 2:1:1 ratio with a drop of ethanol.

Figure S10: SEM images and Co $K_{\alpha 1}$ and Zn $K_{\alpha 1}$ EDAX map scans of [4,4'-H₂bipy][Co_{0.5}Zn_{0.5}Cl₄] (**3**_{0.5}) obtained by grinding [4,4'-H₂bipy]Cl₂, CoCl₂ and ZnCl₂ in a 2:1:1 ratio.

Figure S11: SEM images and Co $K_{\alpha 1}$ and Zn $K_{\alpha 1}$ EDAX map scans of $[\{(4,4'-bipy)Co_{0.5}Zn_{0.5}Cl_2\}_n]$ (**4**_{0.5}) obtained by thermal elimination of 2 equivalents of HCl from $[4,4'-H_2bipy][Co_{0.5}Zn_{0.5}Cl_4]$ (**3**_{0.5}).

Figure S12: $K_{\alpha 1}$ and $K K_{\alpha 1}$ EDAX map scans of $[\{(4,4'-bipy)Co_{0.5}Zn_{0.5}Cl_2\}_n]$ (**4**_{0.5}) obtained by mechanochemical elimination of 2 equivalents of HCI from from $[4,4'-H_2bipy][Co_{0.5}Zn_{0.5}Cl_4]$ (**3**_{0.5}).

Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry 2010

Compound reference	3 _{0.86}	3 _{0.93}	3 _{0.95}
Chemical formula	$C_{10}H_{10}Cl_4Co_{0.14}N_2Zn_{0.86}$	$C_{10}H_{10}Cl_4Co_{0\boldsymbol{\cdot}07}N_2Zn_{0\boldsymbol{\cdot}93}$	$C_{10}H_{10}Cl_4Co_{0\boldsymbol{\cdot}05}N_2Zn_{0\boldsymbol{\cdot}95}$
Formula Mass	364.48	364.90	364.90
Crystal system	Monoclinic	Monoclinic	Monoclinic
a/Å	7.6596(2)	7.65960(10)	7.6491(6)
b/Å	19.7497(7)	19.7388(4)	19.7209(16)
c/Å	9.4708(3)	9.4616(2)	9.4569(8)
α /°	90.00	90.00	90.00
β /°	109.067(2)	109.0620(10)	109.049(2)
$\gamma/^{\circ}$	90.00	90.00	90.00
Unit cell volume/Å ³	1354.09(7)	1352.07(4)	1348.43(19)
Temperature/K	120(2)	120(2)	120(2)
Space group	$P2_{1}/c$	$P2_{1}/c$	$P2_{1}/c$
No. of formula units per unit cell, Z	4	4	4
Absorption coefficient, μ/mm^{-1}	2.504	2.544	2.473
No. of reflections measured	14086	17759	12415
No. of independent reflections	3096	3100	3745
R _{int}	0.0798	0.0334	0.0242
Final R_I values $(I > 2\sigma(I))$	0.0629	0.0216	0.0221
Final $wR(F^2)$ values $(I > 2\sigma(I))$	0.1203	0.0489	0.0575
Final R_1 values (all data)	0.0915	0.0253	0.0228
Final $wR(F^2)$ values (all data)	0.1352	0.0503	0.0580
Goodness of fit on F^2	1.098	1.080	1.052

Table S1: Details of the crystal structure determinations of 3_x with x = 0.95, 0.93 and 0.86