Mononuclear discrete complexes and coordination polymers based on metal(II) chelidonate complexes with aromatic N,Nchelating ligands

Ana Belén Lago^a, Rosa Carballo^{*,a}, Nuria Fernández-Hermida^a and Ezequiel M. Vázquez-López^a

^a Departamento de Química Inorgánica, Facultade de Química, Universidade de Vigo, E-36310 Vigo, Galicia, Spain. Fax: +34 986 812556; Tel: +34 986 812273; E-mail: <u>rcrial@uvigo.es</u>

Supplementary material

	1		2
Cu–O4	1.908(3)	Zn1–O6	1.987(5)
Cu–O6 ⁱ	1.940(3)	Zn1014	2.011(5)
Cu–O6 ⁱⁱ	2.564(3)	Zn1–O1w	2.089(5)
Cu–N1	1.983(3)	Zn1–N3	2.100(6)
Cu–N2	1.992(3)	Zn1–N4	2.122(7)
		Zn2016	2.007(5)
		Zn2–O4 ⁱ	2.023(5)
		Zn2–N2	2.093(6)
		Zn2–O2w	2.093(5)
		Zn2–N1	2.118(6)
O4–Cu–O6 ⁱ	97.46(12)	O6–Zn1–O14	97.3(2)
O4-Cu-N1	91.91(13)	O6–Zn1–O1w	99.7(2)
O6 ⁱ -Cu-N1	169.60(12)	O14–Zn1–O1w	86.4(2)
O4–Cu–N2	166.75(14)	O6–Zn1–N3	126.8(2)
O6 ⁱ -Cu-N2	90.44(13)	O14–Zn1–N3	135.0(2)
N1-Cu-N2	81.23(14)	O1w-Zn1-N3	94.0(2)
O4–Cu–O6 ⁱⁱ	96.02(12)	O6–Zn1–N4	95.5(3)
O6 ⁱ –Cu–O6 ⁱⁱ	85.56(11)	O14–Zn1–N4	92.4(3)
N1–Cu–O6 ⁱⁱ	88.99(12)	O1w-Zn1-N4	164.8(2)
N2–Cu–O6 ⁱⁱ	95.19(12)	N3–Zn1–N4	76.2(2)
		O16–Zn2–O4 ⁱ	100.7(3)
i = x, 3/2-y, z-1	/2	O16–Zn2–N2	132.0(2)
ii = 1-x, ½+y, 1	l.5-z	O4 ⁱ –Zn2–N2	126.4(2)
		O16–Zn2–O2w	87.5(2)
		O4 ⁱ –Zn2–O2w	97.9(2)
		N2–Zn2–O2w	94.2(2)
		O16-Zn2-N1	92.8(2)
		O4 ⁱ –Zn2–N1	93.5(2)
		N2-Zn2-N1	77.0(3)
		O2w-Zn2-N1	168.4(2)
		i = x-	1, y ,z-1

Table S1. Selected bond lengths (\AA) and angles (°) for the coordination polymers 1 and 2.

Compound	3	4	5	6
M–O1w	2.004(3)	2.033(2)	2.090(5)	2.095(4)
M–O2w	1.992(3)	2.077(2)	2.096(6)	2.094(4)
M-011	2.032(2)	2.045(2)	2.028(5)	
M-N1	2.177(3)	2.194(3)	2.059(6)	2.152(4)
M-N2	2.092(3)	2.154(2)	2.096(6)	2.189(4)
M–O3w		2.229(2)	2.055(6)	
M-N11				2.201(4)
M-N12				2.130(4)
O2w-M-O1w	117.60(13)	88.28(10)	90.5(2)	93.64(15)
O11-M-O2w	93.73(11)	87.49(9)	85.1(2)	
O1w-M-O11	96.96(11)	97.31(10)	94.8(2)	
O2w-M-N2	121.22(13)	95.64(10)	93.3(2)	168.74(15)
O1w-M-N2	120.34(12)	94.48(10)	94.5(2)	92.12(14)
O11-M-N2	88.59(10)	167.89(9)	170.5(2)	
O2w-M-N1	90.39(12)	91.35(10)	94.6(2)	92.64(15)
O1w-M-N1	92.79(11)	171.12(10)	172.8(2)	96.09(14)
N1-M-O11	166.17(10)	91.53(9)	90.7(2)	
N2-M-N1	78.00(10)	76.73(10)	80.1(2)	77.12(15)
O1w-M-O3w		91.34(11)	88.4(2)	
O11-M-O3w		88.56(9)	90.9(2)	
O2w-M-O3w		175.95(9)	175.8(2)	
N2-M-O3w		88.41(9)	90.8(2)	
N1-M-O3w		89.64(11)	86.9(2)	
O2w-M-N12				94.21(16)
O1w-M-N12				91.62(15)
N12-M-N1				169.33(16)
N12-M-N2				95.29(16)
O2w-M-N11				88.48(15)
O1w-M-N11				168.40(15)
N12-M-N11				76.84(17)
N1-M-N11				95.20(16)
N2-M-N11				87.81(16)

Table S2. Selected interatomic bond lengths (Å) and angles (°) for the mononuclear complexes 3–6

Compound	D–H···A	d(D–H)	d(H····A)	d(D…A)	∠(DHA)
$\mathbf{\hat{1}}^{a}$	C14–H14O3 ⁱ	0.93	2.30	3.211(6)	167
	C15–H15O5 ⁱⁱ	0.93	2.56	3.473(5)	166
	C19–H19O3 ⁱⁱⁱ	0.93	2.46	3.287(6)	148
2 ^b	$O_{1}W = O_{3}^{iii}$			2 723(8)	
2	$O1w = O5^{iv}$			2.723(0) 2.731(0)	
	0.1^{W} 0.13^{V}			2.751(9) 2.760(8)	
	$O_{2w} O_{3w}^{i}$			2.700(0) 2.962(13)	
	$O_{4w} O_{4ii}^{iii}$			2.902(13)	
	$O4w$ $O16^{ii}$			2.920(2) 2.995(2)	
	$C_{24}H_{24} O_{15}^{i}$	0.93	2 43	335(13)	165
	$C27-H27$ $O15^{i}$	0.93	2.49	3.333(13) 3.421(13)	176
	$C_{29}-H_{29}$ O_{7}^{vii}	0.93	2.49	3.121(13) 3.263(14)	141
	$C39-H39$ $O5^{vi}$	0.93	2.48	3.282(13)	144
	C38–H38 O13 ^{viii}	0.93	2.10	3.202(13) 3.390(12)	149
	C37–H37…O17 ^{vii}	0.93	2.53	3.453(13)	171
	C34–H34O17 ^{vii}	0.93	2.49	3.411(14)	169
1C	0.4 012 ⁱ			2 002(5)	
4	04w015			2.903(5)	
	04W05	0.75(9)	2 00(8)	2.945(0)	170
	O_2W-H_2WAO12	0.75(8)	2.09(8)	2.831(3)	172
	O_2W-H_2WBO14	0.73(8)	1.98(8)	2.700(3)	1/4
	O1W-H1WAO5	0.72(8)	2.00(8)	2.724(3)	1/5
	OIW-HIWBOI3	1.02(8)	1.65(8)	2.659(3)	168
	C4-H4013	0.93	2.39	3.267(4)	156
5 ^d	O3wO6w			2.617(8)	
	O3wO5w			2.828(8)	
	O5wO3 ¹			2.832(9)	
	O5wO3 ⁱⁱ			2.872(9)	
	O6w012 ⁱⁱⁱ			2.755(8)	
	O6wO52 ⁱⁱⁱ			2.763(8)	
	06w01 ⁱⁱⁱ			2.967(7)	
	O2wO51 ^v			2.711(8)	
	O2wO52 ^{vi}			2.842(7)	
	C17-H17O3 ^{iv}	0.93	2.45	3.333(10)	154
a i = -1 + x, 5/2	2-y, -1/2+z; ii = -x, 2-y, 1-	z; iii = -1+x, y	y, -1+z.		

Table S3. Main hydrogen bond distances (Å) and angles (°) for compounds 1–5

^b i = 1-x, 1-y, -z; ii = 1-x, -y, -z; iii = 2-x, -y, 1-z; iv = x-1, y, z; v = 2-x, -y, -z; vi = 2-x, 1-y, 1-z; vii = 2-x, 1-y, -z; viii = x, 1+y, z.

^c i = 2-x, 1-y, 1-z; ii = -1+x, 1+y, -1+z; iii = -1+x, y, z; iv = 1-x, 1-y, 2-z; v = -1+x, 1+y, z; vi = 3-x, -y, 2-z.

^d i = x, -y+1/2, z+1/2; ii = x, y, z+1; iii = -x+1, -y, -z+1; iv = x-1, 1/2 -y, ½+z; v = x-1, y, z; vi = 1-z, -y, -Z.

D-H···A	d(D–H)	d(H···A)	d(D…A)	∠(DHA)	
Tetrameric association of crystallization water molecules					
O4wO6w			2.74(2)		
O3wO5w ⁱⁱⁱ			2.69(1)		
O3wO4w ^{iv}			2.76(1)		
O3wO6w ^{iv}			2.86(2)		
Linkage of the cat	ionic complex	with the water t	etramer		
O2wO4w ⁱ	-		2.651(6)		
C1–H1…O6w ⁱ	0.93	2.62	3.28(2)	128	
Linkage of chelide	onate ion with	the water tetram	er		
O3wO33			2.990(9)		
O4wO36			2.693(7)		
O6wO35			2.97(2)		
O5wO34 ^v			2.738(8)		
O6wO35 ^{iv}			2.92(2)		
C34–34O6w ^{iv}	0.93	2.34	3.22(2)	156	
Linkage of the cat	ionic complex	with chelidonat	e ion		
01w036 ⁱ	-		2.699(5)		
O1wO32 ⁱ			2.720(5)		
01w031 ⁱ			2.901(5)		
O2wO32 ⁱⁱ			2.643(5)		
C2–H2O35 ^{vi}	0.93	2.42	3.349(7)	174	
C8–H8…O35 ^{vii}	0.93	2.61	3.401(7)	143	

Table S4. Main hydrogen bond distances (Å) and angles (°) for compound $\mathbf{6}$

^{*a*} i = x+1/2, -y+3/2, z+1/2; ii = 1-x, 2-y, 1-z; iii = 1+x, y, z; iv = 1-x, 1-y, -z; v = -x+1/2, y-1/2, -z+1/2; vi = 3/2-x, 1/2+y, 1/2-z; vii = 1+x, y, 1+z.